Skip to main content
Log in

Quantum Authencryption with Two-Photon Entangled States for Off-Line Communicants

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, a quantum authencryption protocol is proposed by using the two-photon entangled states as the quantum resource. Two communicants Alice and Bob share two private keys in advance, which determine the generation of two-photon entangled states. The sender Alice sends the two-photon entangled state sequence encoded with her classical bits to the receiver Bob in the manner of one-step quantum transmission. Upon receiving the encoded quantum state sequence, Bob decodes out Alice’s classical bits with the two-photon joint measurements and authenticates the integrity of Alice’s secret with the help of one-way hash function. The proposed protocol only uses the one-step quantum transmission and needs neither a public discussion nor a trusted third party. As a result, the proposed protocol can be adapted to the case where the receiver is off-line, such as the quantum E-mail systems. Moreover, the proposed protocol provides the message authentication to one bit level with the help of one-way hash function and has an information-theoretical efficiency equal to 100 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, pp 175–179. IEEE Press, Bangalore (1984)

    Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  6. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  8. Xiao, L., Long, G.L., Deng, F.G., Pan, JW.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  9. Hao, L., Li, J.L., Long, G.L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Ser. G-Phys. Mech. Astron. 53(3), 491–495 (2010)

    Article  ADS  Google Scholar 

  10. Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 284, 3639–3642 (2011)

    Article  ADS  Google Scholar 

  11. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A, 65, 032302 (2002)

  12. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  13. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  14. Deng, F.G., Long, GL.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

  15. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

  16. Wang, C., Deng, F.G., Long, GL.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253 (1–3), 15–20 (2005)

    Article  ADS  Google Scholar 

  17. Wang, C., Deng, F.G., Long, G.L.: Erratum to “Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state”. Opt. Commun. 262(1), 134 (2006)

    Article  ADS  Google Scholar 

  18. Chen, X.B., Wen, Q.Y., Guo, F.Z., Sun, Y., Xu, G., Zhu, F.C.: Controlled quantum secure direct communication with W state. Int. J. Quant. Inform. 6(4), 899–906 (2008)

    Article  MATH  Google Scholar 

  19. Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)

    Article  ADS  Google Scholar 

  20. Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)

    Article  MATH  Google Scholar 

  21. Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)

    Article  ADS  Google Scholar 

  22. Zhang, Z.J., Liu, J., Wang, D., Shi, SH.: Comment on “Quantum direct communication with authentication”. Phys. Rev. A 75, 026301 (2007)

    Article  ADS  Google Scholar 

  23. Yen, C.A., Horng, S.J., Goan, H.S., Kao, T.W., Chou, YH.: Quantum direct communication with mutual authentication. Quantum Inf. Comput. 9, 376–394 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Liu, W.J., Chen, H.W., Li, Z.Q., Liu, ZH.: Efficient quantum secure direct communication with authentication. Chin. Phys. Lett. 25, 2354–2357 (2008)

    Article  ADS  Google Scholar 

  25. Wang, M.J., Pan, W.: Quantum secure direct communication based on authentication. Chin. Phys. Lett. 25, 3860–3863 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  26. Yang, J., Wang, C.A., Zhang, R.: Quantum secure direct communication with authentication expansion using single photons. Commun. Theor. Phys. 54, 829–834 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Yang, Y.G., Jia, X., Xia, J., Shi, L., Zhang, H.: Comment on “Quantum secure direct communication with authentication expansion using single photons”. Int. J. Theor. Phys. 51, 3681–3687 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, D., Pei, C.X., Quan, D.X., Zhao, N.: A new quantum secure direct communication scheme with authentication. Chin. Phys. Lett. 27, 050306 (2010)

    Article  ADS  Google Scholar 

  29. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of quantum secure direct communication and authentication scheme via Bell states. Chin Phys Lett 28, 020303 (2011)

    Article  ADS  Google Scholar 

  30. Tsai, C.W., Wei, T.S., Hwang, T.: One-way quantum authenticated secure communication using rotation operation. Commun. Theor. Phys. 56, 1023–1026 (2011)

    Article  ADS  MATH  Google Scholar 

  31. Hwang, T., Luo, Y.P., Yang, C.W., Lin, T.H.: Quantum authencryption: one-step authenticated quantum secure direct communications for off-line communicants. Quantum Inf. Process 13, 925–933 (2014)

    Article  ADS  Google Scholar 

  32. Yin, X.R., Ma, W.P., Liu, W.Y., Shen, D.S.: Efficient bidirectional quantum secure communication with two-photon entanglement. Quantum Inf. Process 12, 3093–3102 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lo, H.K., Chau, HF.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)

    Article  ADS  Google Scholar 

  34. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  35. Shannon, C.E.: Communication theory of secrecy system. Bell System Tech. J. 28, 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Funding by the National Natural Science Foundation of China (Grant Nos.61402407, 11375152) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interests

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yu Ye.

Additional information

Introduction: Ye Tian-Yu, is male and born in 1982. He received the Ph.D. degree from Beijing University of Posts and Telecommunications in 2010, and now is a vice professor and a master advisor in Zhejiang Gongshang University. His research interest concentrates on quantum cryptography.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, TY. Quantum Authencryption with Two-Photon Entangled States for Off-Line Communicants. Int J Theor Phys 55, 867–874 (2016). https://doi.org/10.1007/s10773-015-2729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2729-5

Keywords

Navigation