Skip to main content
Log in

Torsion and Particle Horizons

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Inthe present work we show that the existence of non-vanishing torsion field may solve, at least, one of the problems FRW-cosmology, the particle horizons problem. The field equations of general relativity (GR) are written in a space having non-vanishing torsion, the absolute parallelism (AP) space. An AP-Structure, satisfying the cosmological principle, is used to construct a world model. Energy density and pressure, purely induced by torsion, are defined from the building blocks of the AP-geometry using GR. When these quantities are used in the FRW-dynamical equations, we get a world model free from particle horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natio. Acad. Sci. 15, 168 (1929)

    Article  MATH  ADS  Google Scholar 

  2. Bethe, H., Gamow, G.: The origin of chemical elements. Phys. Rev. 73, 803 (1948)

    Article  ADS  Google Scholar 

  3. Alpher, R. A., Herman, R.C.: On the relative abundance of the elements. Phys. Rev. 74, 1737 (1948)

    Article  ADS  Google Scholar 

  4. Penzias, A. A., Wilson, R. W: A Measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  5. Riess, A. G. et al.: Observational evidence from supernovae for and accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201

    Article  ADS  Google Scholar 

  6. Perlmutter, S. et al.: Measurements of omega and lambda from 42 high redshift supernovae. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  7. Arbab, A, I.: Cosmic acceleration with a positive cosmological constant. Class. Quant. Gravi. 20, 1 (2003). arXiv:gr-qc/9905066v5

  8. Sotiriou, T. P., Faraoni, V: f(R) Theories of gravity. Rev. Mod. Phys. 82, 451 (2010). arXiv:0805.1726

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Faraoni, V.: f(R) Gravity: successes and challenges (2008), arXiv:gr-qc/0810.2602

  10. Guth, A. H.: Inflationary universe, a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  11. Linde, A. D.: A new inflationary Universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  12. Trodden, M.: Baryogenesis and the new cosmology. Pramana 62, 451 (2004). arXiv:hep-ph/0302151

    Article  ADS  Google Scholar 

  13. Hou, W.-S., Kohda, M.: Towards reviving electroweak baryogenesis with a fourth generation. Adv. High Ener. Phys. 2013, 9 (2013)

    Google Scholar 

  14. Myrzakulov, R.: Accelerating universe from F(T) gravity. Eur.Phys.J. C71, 1752 (2011). arXiv:1006.1120

    Article  ADS  Google Scholar 

  15. Wu, P, Yu, H.: The stability of the Einstein static state in F(T) gravity. Phys.Lett. B703, 223 (2011). arXiv:1108.5908

    Article  MathSciNet  ADS  Google Scholar 

  16. Nashed, G.G.L.: Spherically symmetric solutions on a non-trivial frame in F(T) theories of gravity. Chin. Phys. Lett 29, 50402 (2012)

    Article  Google Scholar 

  17. Dent, J. B., Dutta, S., Saridakis, E. N.: f(T) gravity mimicking dynamical dark energy. Background and perturbation analysis. JCAP 1101, 9 (2011). arXiv:1010.2215v2

    Article  ADS  Google Scholar 

  18. Poplawski, N. J.: Cosmology with torsion - an alternative to cosmic inflation. Phys. Lett. B694, 181 (2010). arXiv:1007.0587

    Article  MathSciNet  ADS  Google Scholar 

  19. Ratbay Myrzakulov: Cosmology in F(R, T) gravity. Eur. Phys. J. C72, 2203 (2012). arXiv:1207.1039v3

    Article  Google Scholar 

  20. Wanas, M.I.: Absolute parallelism geometry: developments, applications and problems. Stud. Cercet. Stiin. Ser. Mat, 10, 297 (2002). arXiv:0209050

    Google Scholar 

  21. Wanas, M.I.: Parameterized absolute parallelism: a geometry for physical applications. Turk. J. Phys. 24, 473 (2000). arXiv:gr-qc/0010099

    Google Scholar 

  22. Youssef, N. L., Sid-Ahmed, A. M.: Linear connections and curvature tensors in the geometry of parallelizable manifolds. Rept. Math. Phys. 60(39) (2007). arXiv:gr-qc/0604111

  23. Mikhail, F. I: Tetrad vector fields and generalizing the theory of relativity. Ain Shams. Sci. Bull 6, 76 (1962)

    Google Scholar 

  24. Souza, R.S., Opher, R.: Origin of 1015−1016G magnetic fields in the central engine of gamma ray bursts. JCAP 1002, 22 (2010). aXriv: astro-ph/0910.5258.

    Article  Google Scholar 

  25. Souza, R. S., Opher, R.: Origin of intense magnetic fields near black holes due to non-minimal gravitational-electromagnetic coupling. Phys. Lett. B705, 292–293 (2011). aXriv: astro-ph/0804.4895

    Article  ADS  Google Scholar 

  26. Wanas, M.I.: A self-consistent world model. Astrophys. Space Sci. 154, 165 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  27. Wanas, M. I.: On the relation between mass and charge: a pure geometric approach. Int. J. Geom. Meth. Mod. Phys. 4, 373–388 (2008). arXiv:gr-qc/703036

    Article  MathSciNet  ADS  Google Scholar 

  28. Robertson, H.P: Groups of motion in spaces admitting absolute parallelism. Ann. Math. Princ. 33, 496 (1932)

    Article  Google Scholar 

  29. Wanas, M. I.: Geometrical structures for cosmological applications. Astrophys. Space Sci. 127, 21 (1986)

    Article  ADS  Google Scholar 

  30. Mikhail, F. I., Wanas, M. I.: A generalized field theory. II. Linearized field equations. Int. Jour. Theoret. Phys 20, 671 (1981)

    Article  Google Scholar 

  31. Garcia-Bellido, J.: Astrophysics and cosmology. (1999) arXiv:hep-ph/0004188

  32. Wanas, M. I.: A generalized field theory: charged spherical symmetric solutions. Int. J. Theoret. Phys. 24, 639 (1985)

    Article  MathSciNet  Google Scholar 

  33. Mikhail, F. I., Wanas, M. I., Hindawi, A., Lashin , E. I.: Energy-momentum complex in Moller’s tetrad theory of gravitation. Int. J. Theoret. Phys. 32, 1627 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Wanas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanas, M.I., Hassan, H.A. Torsion and Particle Horizons. Int J Theor Phys 53, 3901–3909 (2014). https://doi.org/10.1007/s10773-014-2141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2141-6

Keywords

Navigation