Skip to main content
Log in

Atom Capture by Nanotube and Scaling Anomaly

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The existence of bound state of the polarizable neutral atom in the inverse square potential created by the electric field of a single walled charged carbon nanotube (SWNT) is shown to be theoretically possible. The consideration of inequivalent boundary conditions due to self-adjoint extensions lead to this nontrivial bound state solution. It is also shown that the scaling anomaly is responsible for the existence of such bound state. Binding of the polarizable atoms in the coupling constant interval η 2∈[0,1) may be responsible for the smearing of the edge of steps in quantized conductance, which has not been considered so far in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ristroph, T., Goodsell, A., Golovchenko, J.A., Hau, L.V.: Phys. Rev. Lett. 94, 066102 (2005)

    Article  ADS  Google Scholar 

  2. Denschlag, J., Umshaus, G., Schmiedmayer, J.: Phys. Rev. Lett. 81, 737 (1998)

    Article  ADS  Google Scholar 

  3. Arimondo, E., Philips, W.D., Strumia, F. (eds.): Laser Manipulation of Atoms and Ions. Proceedings of the International School of Physics “Enrico Fermi”. North-Holland, Amsterdam (1992)

    Google Scholar 

  4. Chu, S.: Rev. Mod. Phys. 70, 685 (1998)

    Article  ADS  Google Scholar 

  5. Cohen-Tannoudji, C.N.: Rev. Mod. Phys. 70, 707 (1998)

    Article  ADS  Google Scholar 

  6. Phillips, W.D.: Rev. Mod. Phys. 70, 721 (1998)

    Article  ADS  Google Scholar 

  7. Hau, L.V., Burns, M.M., Golovchenko, J.A.: Phys. Rev. A 45, 6468 (1992)

    Article  ADS  Google Scholar 

  8. Hau, L.V., Burns, M.M., Golovchenko, J.A.: Phys. Rev. Lett. 74, 3138 (1995)

    Article  ADS  Google Scholar 

  9. Weinstein, J.D., Libbrecht, K.G.: Phys. Rev. A 52, 4004 (1995)

    Article  ADS  Google Scholar 

  10. Schmiedmayer, J.: Appl. Phys. B 60, 169 (1995)

    Article  ADS  Google Scholar 

  11. Denschlag, J., Schmiedmayer, J.: Europhys. Lett. 38, 405 (1997)

    Article  ADS  Google Scholar 

  12. Gong, J., Ma, A., Rice, S.A.: Phys. Rev. A 72, 063410 (2005)

    Article  ADS  Google Scholar 

  13. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon Press, London (1959)

    Google Scholar 

  14. Case, K.M.: Phys. Rev. 80, 797 (1950)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  16. Tkachuk, V.M.: Phys. Rev. A 60, 4715 (1999)

    Article  ADS  Google Scholar 

  17. Basu-Mallick, B., Ghosh, P.K., Gupta, K.S.: Nucl. Phys. B 659, 437 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Basu-Mallick, B., Ghosh, P.K., Gupta, K.S.: Phys. Lett. A 311, 87 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Gupta, K.S.: Mod. Phys. Lett. A 18, 2355 (2003)

    Article  MATH  ADS  Google Scholar 

  20. Reed, M., Simon, B.: Fourier Analysis, Self-Adjointness. Academic, New York (1975)

    MATH  Google Scholar 

  21. Dunford, N., Schwartz, J.T.: Linear Operators, Spectral Theory, Self Adjoint Operators in Hilbert Space, Part 2. Wiley-Interscience, New York (1988)

    Google Scholar 

  22. Feher, L., Tsutsui, I., Fulop, T.: Nucl. Phys. B 715, 713 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Falomir, H., Muschietti, M.A., Pisani, P.A.G.: J. Math. Phys. 45, 4560 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Falomir, H., Muschietti, M.A., Pisani, P.A.G., Seeley, R.: J. Phys. A 36, 9991 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Falomir, H., Pisani, P.A.G., Wipf, A.: J. Phys. A 35, 5427 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Basu-Mallick, B., Gupta, K.S.: Phys. Lett. A 292, 36 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Birmingham, D., Gupta, K.S., Sen, S.: Phys. Lett. B 505, 191 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Gupta, K.S., Sen, S.: Phys. Lett. B 526, 121 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Meljanac, S., Samsarov, A., Basu-Mallick, B., Gupta, K.S.: Eur. Phys. J. C 49, 875 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. Camblong, H.E., Epele, L.N., Fanchiotti, H., Canal, C.A.G.: Phys. Rev. Lett. 87, 220402 (2001)

    Article  ADS  Google Scholar 

  31. Camblong, H.E., Ordonez, C.R.: Phys. Rev. D 68, 125013 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. Giri, P.R., Gupta, K.S., Meljanac, S., Samsarov, A.: hep-th/0703121 (2007)

  33. Esteve, J.G.: Phys. Rev. D 34, 674 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  34. Esteve, J.G.: Phys. Rev. D 66, 125013 (2002)

    Article  ADS  Google Scholar 

  35. Abromowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1970)

    Google Scholar 

  36. Gupta, K.S., Rajeev, S.G.: Phys. Rev. D 48, 5940 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulak Ranjan Giri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giri, P.R. Atom Capture by Nanotube and Scaling Anomaly. Int J Theor Phys 47, 1776–1783 (2008). https://doi.org/10.1007/s10773-007-9620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-007-9620-y

Keywords

Navigation