Skip to main content
Log in

Hybridization of spectral filtering with particle swarm optimization for speech signal enhancement

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

Speech enhancement has received a significant amount of research attention over the past several decades. The enhancement of speech signal is needed so as to improve the degraded signal and the goal is to separate a single mixture into its underlying clean speech and interferer components. This is achieved by having prior knowledge through learning and generation of masks accordingly. Hybridization of the spectral filtering and optimization algorithm is employed for speech enhancement in this paper. The proposed technique uses MMSE (Minimum Mean Squared Error) and PSO (Particle Swarm Optimization) for effective enhancement. The proposed technique is three module technique consisting of pre-processing module, optimization module and spectral filtering module. Loizou’s database and Aurora dataset are used for evaluating the proposed technique using standard evaluation metrics consists of PESQ and SNR. Comparative analysis is also made by comparing with other existing techniques such as MMSE and BNMF. Highest PESQ for proposed technique is 2.75 and highest SNR came about 32.97. The technique gave average PESQ of 2.18 and average SNR of 20.53 which was higher than the average values for other techniques. Hence, we can observe that proposed technique yielded better evaluation metrics than the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Banbrook, M., McLaughlin, S., & Mann, I. (1999). Speech characterization and synthesis by nonlinear methods. IEEE Transactions on Speech and Audio Processing, 7, 1–17.

    Article  Google Scholar 

  • Boll, S. F. (1979). Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions Acoustics Speech Signal Process, 27, 113–120.

    Article  Google Scholar 

  • Choi, J.-H., & Chang, J.-H. (2012). On using acoustic environment classification for statistical model-based speech enhancement. Speech Communication, 54, 477–490.

    Article  Google Scholar 

  • Choma, M. A., Sarunic, M. V., Yang, C., & Izatt, Joseph A. (2003). Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 11(18), 2183–2189.

    Article  Google Scholar 

  • Deller, J. R., Hansen, J. H. L., & Proakis, J. G. (2000). Discrete time processing of speech signals (2nd ed.). New York: IEEE Press.

    Google Scholar 

  • Ding, H., Ding, I. Y., Koh, S. N., & Yeo, C. K. (2009). A spectral filtering method based on hybrid wiener filters for speech enhancement. Journal Speech Communication, 51(3), 259–267.

    Article  Google Scholar 

  • Donoho, D. L. (1995). Denoising by soft thresholding. IEEE Transactions Information Theory, 41(3), 613–627.

    Article  MathSciNet  MATH  Google Scholar 

  • Ephraim, Y. (1992). A Bayesian estimation approach for speech enhancement using hidden Markov models. IEEE Transaction Signal Processing, 40(4), 725–735.

    Article  Google Scholar 

  • Ephraim, Y., & Malah, D. (1984a). Speech enhancement using a minimum mean-square error short-timespectral amplitude estimator, IEEE Transactions Acoustics speech Signal Process ASSP, 32(6), 1109–1121.

    Article  Google Scholar 

  • Ephraim, Y., & Malah, D. (1984b). Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP, 32(6), 1109–1121.

    Article  Google Scholar 

  • Ephraim, Y., & Malah, D. (1984c). Speech enhancement using a minimum mean square error short-time spectral amplitude estimator. IEEE Transaction Acoustics, Speech and Signal Processing ASSP, 32, 1109–1121.

    Article  Google Scholar 

  • Ephraim, Y., & Van Trees, H. L. (1995). A signal subspace approach for speech enhancement. IEEE Transaction Speech and Audio Processing, 3(4), 251–266.

    Article  Google Scholar 

  • Ghasemi, J., & Mollaei, M. R. K. (2009). A new approach for speech enhancement based on eigen value spectral subtraction. Signal Processing, 3(4), 34–41.

    Google Scholar 

  • Gustafsson, H., Nordholm, S. E., & Claesson, I. (2001). Spectral subtraction using reduced delay convolution and adaptive averaging. IEEE Transactions on Speech and Audio Processing, 9(8), 799–807.

    Article  Google Scholar 

  • Hirsch, H., & Pearce, D. (2000). The Aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions, ISCA ITRW ASR, September 18–20.

  • Hu, Y., & Loizou, P. (2006). Subjective comparison of speech enhancement algorithms. In Proceedings of IEEE international conference acoustics, speech, signal processing (vol. 1, pp. 153–156).

  • Hu, Y., & Loizou, P. C. (2008). Evaluation of objective quality measures for speech enhancement. IEEE transactions on audio, speech and language processing, 16(1), 229–238.

    Article  Google Scholar 

  • Johnson, M. T., Lindgren, A. C., Povinelli, R. J., & Yuan, X. (2003). Performance of nonlinear speech enhancement using phase space recognition struction. ICASSP, 1, 1–920.

    Google Scholar 

  • Kim, G., & Loizou, P. C. (2010). Improving speech intelligibility in noise using environment optimized algorithms. IEEE Transactions On Audio, Speech and Language Processing, 18(8), 2080–2090.

    Article  Google Scholar 

  • Kim, G., Yang, L., Yi, H., & Loizoua, P. C. (2009). An algorithm that improves speech intelligibility in noise for normal-hearing listeners. Journal of the Acoustic Society of America, 126(3), 1486–1492.

    Article  Google Scholar 

  • Kressner, A. A., Anderson, D. V., & Rozell, C. J. (2013). Causal binary mask estimation for speech enhancement using sparsity constraints. POMA, 19, 55037.

    Google Scholar 

  • Loizou, P. C. (2007). Speech enhancement: theory and practice. Boca Raton: CRC Press.

    Google Scholar 

  • Lollmann, H. W., & Vary, P. (2009). A blind speech enhancement algorithm for the suppression of late reverberation and noise. In Proceedings of IEEE international conference on acoustics, speech and signal processing, (pp. 3989–3992).

  • Madhu, N., Spriet, A., Jansen, S., Koning, R., & Wouters, J. (2013). The potential for speech intelligibility improvement using the ideal binary mask and the ideal wiener filter in single channel noise reduction systems: application to auditory prostheses. IEEE Transactions On Audio, Speech, and Language Processing, 21(1), 63–72.

    Article  Google Scholar 

  • Moraglio, A., Di Chio, C., & Poli, R. (2007). Geometric particle swarm optimization. Lecture Notes in Computer Science, 4445, 125–136.

    Article  Google Scholar 

  • Nickel, R. M., Astudillo, R. F., Kolossa, D., & Martin, R. (2013). Corpus-Based Speech Enhancement With Uncertainty Modeling and Cepstral Smoothing. IEEE Transactions On Audio, Speech, And Language Processing, 21(5), 983–997.

    Article  Google Scholar 

  • Quackenbush, S., Barnwell, T., & Clements, M. (1988). Objective measures of speech quality. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Rezayee, A., & Gazor, S. (2001). An adaptive KLT approach for speech enhancement. IEEE Transaction Speech and Audio Processing, 9(2), 87–95.

    Article  Google Scholar 

  • Rix, A. W., Hollier, M. P., Hekstra, A. P., & Beerend, J. G. (2000). Perceptual evaluation of speech quality (PESQ), and objective method for end-to-end speech quality assessment of narrowband telephone networks and speech codecs, ITU, ITU-T Rec. P. 862.

  • Sharma, B., Sehgal, S., & Nain, A. (2013). Particle swarm optimization and genetic algorithm based optimal power flow solutions. International Journal of Application or Innovation in Engineering and Management, 2(7), 307–315.

    Google Scholar 

  • Siegel, N., Rosen, J., & Brooker, G. (2013). Faithful reconstruction of digital holograms captured by FINCH using a Hamming window function in the Fresnel propagation. Optics Letters, 38(19), 3922–3925.

    Article  Google Scholar 

  • Sigg, C. D., Dikk, T., & Buhmann, J. M. (2012). Speech enhancement using generative dictionary learning. IEEE Transactions on Audio, Speech and Language Processing, 20(6), 1692–1718.

    Article  Google Scholar 

  • Smita, P., & Vaidya B. N. (2012). Particle swarm optimization based optimal power flow for reactive loss minimization. In Proceedings of conference on electrical, electronics and computer science.

  • Soon, I. Y., Koh, S. N., & Yeo, C. K. (1998). Noisy speech enhancement using discrete cosine transform. Speech Communication, 24(3), 249–257.

    Article  Google Scholar 

  • Suman, M., Khan, H., Latha, M. M., & Kumari, D. A. (2011). Speech enhancement and recognition of compressed speech signal in noisy reverberant conditions. International Research Journal of Signal Processing, 02(02), 80.

    Google Scholar 

  • Thorpe, L., & Yang, W. (1999). Performance of current perceptual objective speech quality measures. In Proceedings of IEEE speech coding workshop (pp. 144–146).

  • Van den Bogaert, T., Doclo, S., Wouters, J., & Moonen, M. (2009). Speech enhancement with multichannel Wiener filter techniques in multimicrophone binaural hearing aids. Journal of the Acoustic Society of America, 125(1), 360–371.

    Article  Google Scholar 

  • Welker, D. P., Greenberg, J. E., Desloge, J. G., & Zurek, P. M. (1997). Microphone-array hearing aids with binaural output-part II: a two microphone adaptive system. IEEE Transactions Speech Audio Process, 5, 543–551.

    Article  Google Scholar 

  • Xiao, X., & Nickel, R. M. (2010). Speech enhancement with inventory style speech resynthesis. IEEE Transaction Audio, Speech, Language Processing, 18(6), 1243–1257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Senthamizh Selvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvi, R.S., Suresh, G.R. Hybridization of spectral filtering with particle swarm optimization for speech signal enhancement. Int J Speech Technol 19, 19–31 (2016). https://doi.org/10.1007/s10772-015-9317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-015-9317-1

Keywords

Navigation