Skip to main content
Log in

Assessment of the Nucleus-to-Cytoplasmic Ratio in MCF-7 Cells Using Ultra-high Frequency Ultrasound and Photoacoustics

  • ICPPP 18
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

An Erratum to this article was published on 16 February 2017

Abstract

The nucleus-to-cytoplasmic (N:C) ratio of a cell is often used when assessing histology for the presence of malignant disease. In this proof of concept study, we present a new, non-optical method for determination of the N:C ratio using ultra-high Frequency ultrasound (US) and photoacoustics (PA). When using transducers in the 100 MHz–500 MHz range, backscattered US pulses and emitted PA waves are encoded with information pertaining to the dimension and morphology of micron-sized objects. If biological cells are interrogated, the diameter of the scattering or absorbing structure can be assessed by fitting the power spectra of the measured US or PA signals to theoretical models for US backscatter and PA emission from a fluid sphere. In this study, the cell and nucleus diameters of 9 MCF-7 breast cancer cells were determined using a new simplified model that calculates the theoretical values of the location of the power spectra minima for both US and PA signals. These diameters were then used to calculate the N:C ratio of the measured cells. The average cell diameter determined by US pulses from a transducer with a central frequency of 375 MHz was found to be \(15.5\,\upmu \hbox {m}\pm \,1.8\,\upmu \hbox {m}\). The PA waves emitted by the cell nuclei were used to determine an average nuclear diameter of \(12.0\,\upmu \hbox {m}\pm 1.3\,\upmu \hbox {m}\). The N:C ratio for these cells was calculated to be \(1.9\pm 1.0\), which agrees well with previously reported N:C values for this cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. B. Stewart, C. Wild, World Cancer Report 2014 (International Agency for Research on Cancer, Lyon, 2014)

    Google Scholar 

  2. C. Fletcher, Diagnostic Histopathology of Tumors, 4th edn. (Saunders/Elsevier, Philadelphia, 2013)

    Google Scholar 

  3. J.A. Swanson, M. Lee, P.E. Knapp, J. Cell Biol. 115, 941 (1991). doi:10.1083/jcb.115.4.941

    Article  Google Scholar 

  4. M.J. Doughty, Curr. Eye Res. 37, 583 (2012). doi:10.3109/02713683.2012.655397

    Article  Google Scholar 

  5. E. Cosatto, M. Miller, H.P. Graf, J.S. Meyer, Pattern Recognition, 2008. ICPR 2008. In 19th International Conference pp. 1–4 (2008). doi:10.1109/ICPR.2008.4761112

  6. S. Petushi, F.U. Garcia, M.M. Haber, C. Katsinis, A. Tozeren, BMC Med. Imaging 6, 14 (2006). doi:10.1186/1471-2342-6-14

    Article  Google Scholar 

  7. P. Balasubramanian, L. Yang, J.C. Lang, K.R. Jatana, D. Schuller, A. Agrawal, M. Zborowski, J.J. Chalmers, Mol. Pharm. 6, 1402 (2009). doi:10.1021/mp9000519

    Article  Google Scholar 

  8. V. Nandakumar, L. Kelbauskas, K.F. Hernandez, K.M. Lintecum, P. Senechal, K.J. Bussey, P.C.W. Davies, R.H. Johnson, D.R. Meldrum, Plos One 7, e29230 (2012). doi:10.1371/journal.pone.0029230

  9. V. Nandakumar, L. Kelbauskas, R. Johnson, D. Meldrum, Cytom. Part A 79A, 25 (2011). doi:10.1002/cyto.a.20997

  10. T.C. George, D.A. Basiji, B.E. Hall, D.H. Lynch, W.E. Ortyn, D.J. Perry, M.J. Seo, C.A. Zimmerman, P.J. Morrissey, Cytometry A 59A, 237 (2004). doi:10.1002/cyto.a.20048

  11. T.C. George, S.L. Fanning, P. Fitzgeral-Bocarsly, R.B. Medeiros, S. Highfill, Y. Shimizu, B.E. Hall, K. Frost, D. Basiji, W.E. Ortyn, P.J. Morrissey, D.H. Lynch, J. Immunol. Methods 311, 117 (2006). doi:10.1016/j.jim.2006.01.018

    Article  Google Scholar 

  12. D.A. Basiji, W.E. Ortyn, L. Liang, V. Venkatachalam, P. Morrissey, Clin. Lab. Med. 27, 653 (2007). doi:10.1016/j.cll.2007.05.008

    Article  Google Scholar 

  13. V.P. Zharov, E.I. Galanzha, V.V. Tuchin, Opt. Lett. 30, 628 (2005). doi:10.1364/OL.30.000628

    Article  ADS  Google Scholar 

  14. V.P. Zharov, E.I. Galanzha, V.V. Tuchin, J. Biomed. Opt. 10, 051502 (2005). doi:10.1117/1.2070167

    Article  ADS  Google Scholar 

  15. V.P. Zharov, E.I. Galanzha, V.V. Tuchin, J. Cell Biochem. 97, 916 (2006). doi:10.1002/jcb.20766

    Article  Google Scholar 

  16. E.I. Galanzha, E.V. Shashkov, P.M. Spring, J.Y. Suen, V.P. Zharov, Cancer Res. 69, 7926 (2009). doi:10.1158/0008-5472.CAN-08-4900

    Article  Google Scholar 

  17. E.I. Galanzha, E.V. Shashkov, T. Kelly, J.W. Kim, L. Yang, V.P. Zharov, Nat. Nanotechnol. 4, 855 (2009). doi:10.1038/nnano.2009.333

    Article  ADS  Google Scholar 

  18. E.I. Galanzha, V.P. Zharov, Cancers (Basel) 5, 1691 (2013). doi:10.3390/cancers5041691

    Article  Google Scholar 

  19. D.A. Nedosekin, M.A. Juratli, M. Sarimollaoglu, C.L. Moore, N.J. Rusch, M.S. Smeltzer, V.P. Zharov, E.I. Galanzha, J. Biophoton. 6, 523 (2013). doi:10.1002/jbio.201200242

    Article  Google Scholar 

  20. E.M. Strohm, E.S.L. Berndl, M.C. Kolios, Photoacoustics 1, 49 (2013). doi:10.1016/j.pacs.2013.08.003

    Article  Google Scholar 

  21. E.M. Strohm, M.C. Kolios, Cytom. Part A 87, 741 (2015). doi:10.1002/cyto.a.22698

    Article  Google Scholar 

  22. E.M. Strohm, M.J. Moore, M.C. Kolios, IEEE J. Sel. Top. Quantum Electron. 22, 6801215 (2016). doi:10.1109/JSTQE.2015.2497323

    Article  Google Scholar 

  23. E.M. Strohm, E.S.L. Berndl, M.C. Kolios, Biophys. J. 105, 59 (2013). doi:10.1016/j.bpj.2013.05.037

    Article  ADS  Google Scholar 

  24. G.J. Diebold, T. Sun, M.I. Khan, Phys. Rev. Lett. 67, 3384 (1991). doi:10.1103/PhysRevLett.67.3384

    Article  ADS  Google Scholar 

  25. G.J. Diebold, M.I. Khan, S.M. Park, Science 250, 101 (1990). doi:10.1126/science.250.4977.101

    Article  ADS  Google Scholar 

  26. E. Moeendarbary, L. Valon, M. Fritzsche, A.R. Harris, D.A. Moulding, A.J. Thrasher, E. Stride, L. Mahadevan, G.T. Charras, Nat. Mater. 12, 253 (2013). doi:10.1038/nmat3517

    Article  ADS  Google Scholar 

  27. V.C. Anderson, J. Acoust. Soc. Am. 22, 426 (1950). doi:10.1121/1.1906621

    Article  ADS  Google Scholar 

  28. H.G. Frey, R.R. Goodman, J. Acoust. Soc. Am. 40, 417 (1966). doi:10.1121/1.1910089

    Article  ADS  Google Scholar 

  29. L.V. Wang, IEEE J. Sel. Top. Quantum Electron 14, 171 (2008). doi:10.1109/JSTQE.2007.913398

    Article  Google Scholar 

  30. G.J. Diebold, P.J. Westervelt, J. Acoust. Soc. Am. 84, 2245 (1988). doi:10.1121/1.397017

    Article  ADS  Google Scholar 

  31. G. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice-Hall, New Jersey, 1997)

    Google Scholar 

  32. A. Siegman, Lasers (University Science Books, California, 1986)

    Google Scholar 

  33. M. Kolios, E. Strohm, G. Czarnota, in Quantitative Ultrasound Soft Tissues, ed. by J. Mamou, M. Oelze (Springer, Berlin, 2013), pp. 315–341

  34. M.M. Pasternak, E.M. Strohm, E.S.L. Berndl, M.C. Kolios, Cell Cycle 14, 2891 (2015). doi:10.1080/15384101.2015.1069925

    Article  Google Scholar 

  35. H. Reile, G. Bernhardt, M. Koch, H. Schonenberger, M. Hollstein, F. Lux, Cancer Chemother. Pharmacol. 30, 113 (1992). doi:10.1007/BF00686402

    Article  Google Scholar 

  36. S.K. Arya, K.C. Lee, D.B. Dah’alan, Daniel, A.R.A. Rahman, Lab Chip 12, 2362 (2012). doi:10.1039/C2LC21174B

  37. D.L. Adams, P. Zhu, O.V. Makarova, S.S. Martin, M. Charpentier, S. Chumsri, S. Li, P. Amstutz, C.M. Tang, RSC Adv. 4, 4334 (2014). doi:10.1039/C3RA46839A

    Article  Google Scholar 

  38. J. Dahle, E. Kalanxhi, N. Tisnek, Anticancer Res. 31, 2113 (2011)

    Google Scholar 

  39. I. Haque, S. Banerjee, A. De, G. Maity, S. Sarkar, M. Majumdar, S.S. Jha, D. McGragor, S.K. Banerjee, Oncogene 34, 3152 (2015). doi:10.1038/onc.2014.250

    Article  Google Scholar 

  40. B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 6th edn. (Garland Science, New York, 2015)

    Google Scholar 

  41. E.M. Strohm, V. Gnyawali, M. Van De Vondervoort, Y. Daghighi, S.S.H. Tsai, M.C. Kolios, Proc. SPIE 9708, 97081A (2016). doi:10.1117/12.2211740

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank E. Berndl (Ryerson University) for her assistance with biological cell culturing. This research is supported in part by the Natural Sciences and Engineering Research Council of Canada, the Canadian Cancer Society, the Canadian Foundation for Innovation, and the Ontario Ministry for Research and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Kolios.

Additional information

Selected Papers of the 18th International Conference on Photoacoustic and Photothermal Phenomena.

An erratum to this article is available at http://dx.doi.org/10.1007/s10765-017-2189-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, M.J., Strohm, E.M. & Kolios, M.C. Assessment of the Nucleus-to-Cytoplasmic Ratio in MCF-7 Cells Using Ultra-high Frequency Ultrasound and Photoacoustics. Int J Thermophys 37, 118 (2016). https://doi.org/10.1007/s10765-016-2129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2129-y

Keywords

Navigation