Skip to main content
Log in

Extended Investigation on the Delicate Correlations Between Thermal Behavior and Physical Characteristics of Multi-component Blends

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Polypropylene (PP)/polyamide6 (PA6)/ethylene propylene diene rubber (EPDM) (70/15/15) ternary polymer blends compatibilized with maleic anhydride-grafted EPDM (EPDM-g-MA) were prepared under various processing parameters (barrel temperature, screw speed, and blending sequence). Thermal studies on the prepared blend samples were carried out using differential scanning calorimetry and dynamic mechanical thermal analysis. According to the results, heterogeneous nucleation phenomenon was observed due to the solidification of the PA6 particles dispersed within the PP melt leading to a significant increase in the crystallinity degree and exotherm crystallization peak temperature of PP compared to the pure homopolymer. This was suppressed in the samples with core–shell morphology due to the reduced PP/PA6 interfacial contact. Fractionated crystallization was observed when PA6 droplets dispersed too fine within the matrix (in this case \(\bar{d}_M\sim 0.3\,\upmu \hbox {m}\)). Scanning electron microscopy micrographs were consistent with the melting and crystallization behavior of the blend samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L.A. Utracki, Polymer Blends (iSmithers Rapra Publishing, Shrewsbury, 2000)

    Google Scholar 

  2. A. Dawson, M. Rides, A. Cuenat, L. Winkless, Int. J. Thermophys. 34, 865 (2013)

    Article  ADS  Google Scholar 

  3. J.M.G. Cowie, Encyclopedia of Polymer Science and Engineering Supplement (Wiley, New York, 1989)

    Google Scholar 

  4. W.J. Mac Knight, J. Stoelting, F.E. Karasz, Adv. Chem. Ser. 99, 29 (1971)

    Article  Google Scholar 

  5. O. Olabisi, Polymer–Polymer Miscibility (Elsevier Science, New York, 2012)

    Google Scholar 

  6. R.E. Wetton, P.J. Corish, Polym. Test. 8, 303 (1989)

    Article  Google Scholar 

  7. D. Bikiaris, J. Prinos, M. Botev, C. Betchev, C. Panayiotou, J. Appl. Polym. Sci. 93, 726 (2004)

    Article  Google Scholar 

  8. D. Pinoit, R.E. Prud’homme, Polymer 43, 2321 (2002)

    Article  Google Scholar 

  9. N.M. Levin, Polym. Test. 9, 315 (1990)

    Article  Google Scholar 

  10. T.Y. Guo, M.D. Song, G.J. Hao, B.H. Zhang, Eur. Polym. J. 37, 241 (2001)

    Article  Google Scholar 

  11. K.A. Moly, S.S. Bhagawan, G. Groeninckx, S. Thomas, J. Appl. Polym. Sci. 100, 4526 (2006)

    Article  Google Scholar 

  12. D. Li, J. Brisson, Macromolecules 29, 868 (1996)

    Article  ADS  Google Scholar 

  13. R.N. Darie, M. Brebu, C. Vasile, M. Kozlowski, Polym. Degrad. Stab. 80, 551 (2003)

    Article  Google Scholar 

  14. S.L. Bai, G.T. Wang, J.M. Hiver, C. G’Sell, Polymer 45, 3063 (2004)

    Article  Google Scholar 

  15. N. Zeng, S.L. Bai, C. G’Sell, J.M. Hiver, Y.W. Mai, Polym. Int. 51, 1439 (2002)

    Article  Google Scholar 

  16. A. Wilkinson, M.L. Clemens, Polymer 45, 5239 (2004)

    Article  Google Scholar 

  17. S. Shokoohi, A. Arefazar, Polym. Adv. Technol. 20, 433 (2009)

    Article  Google Scholar 

  18. S. Shokoohi, A. Arefazar, G. Naderi, Mater. Des. 23, 1697 (2011)

    Article  Google Scholar 

  19. S. Shokoohi, A. Arefazar, G. Naderi, Polym. Adv. Technol. 23, 418 (2012)

    Article  Google Scholar 

  20. M.D. Stelescu, A. Airinei, C. Grigoras, I.-G. Niculescu-Aron, Int. J. Thermophys. 31, 2264 (2010)

    Article  ADS  Google Scholar 

  21. A.L. Catto, B.V. Stefani, V.F. Ribeiro, R.M.C. Santana, Mater. Res. 17, 203 (2014)

    Article  Google Scholar 

  22. J.E. Mark, Polymer Data Handbook (Oxford University Press, Oxford, 2009)

    Google Scholar 

  23. X.H. Liu, Q.J. Wu, L.A. Berglund, J.Q. Fan, Z.N. Qi, Polymer 42, 8235 (2001)

    Article  Google Scholar 

  24. H.S. Moon, B.K. Ryoo, J.K. Park, J. Polym. Sci. Pol. Phys. 32, 1427 (1994)

    Article  ADS  Google Scholar 

  25. B. Ohlsson, H. Hassander, B. Tornell, Polymer 39, 4715 (1998)

    Article  Google Scholar 

  26. O.T. Ikkala, R.M. Holstimiettinen, J. Seppala, J. Appl. Polym. Sci. 49, 1165 (1993)

    Article  Google Scholar 

  27. K. Dedecker, G. Groeninckx, Polymer 39, 4993 (1998)

    Article  Google Scholar 

  28. M.L. Arnal, M.E. Matos, R.A. Morales, O.O. Santana, A.J. Muller, Macromol. Chem. Phys. 199, 2275 (1998)

    Article  Google Scholar 

  29. M.L. Arnal, A.J. Muller, Macromol. Chem. Phys. 200, 2559 (1999)

    Article  Google Scholar 

  30. J.J. Aklonis, W.J. MacKnight, Introduction to Polymer Viscoelasticity (Wiley, New York, 1983)

    Google Scholar 

  31. R.C. Progelhof, J.L. Throne, Polymer Engineering Principles: Properties, Processes and Test for Design (Hanser, New York, 1993)

    Google Scholar 

  32. A. Gnatowski, J. Koszkul, J. Mater. Process. Technol. 175, 212 (2006)

    Article  Google Scholar 

  33. Z.A.M. Ishak, J.P. Berry, J. Appl. Polym. Sci. 51, 2145 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirin Shokoohi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokoohi, S. Extended Investigation on the Delicate Correlations Between Thermal Behavior and Physical Characteristics of Multi-component Blends. Int J Thermophys 36, 3071–3082 (2015). https://doi.org/10.1007/s10765-015-1963-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1963-7

Keywords

Navigation