Skip to main content
Log in

Equation of State for the Lennard-Jones Truncated and Shifted Model Fluid

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An equation of state is developed for the Lennard-Jones model fluid, truncated and shifted at \(r_{\mathrm{c}} = 2.5\sigma \). The underlying dataset contains thermodynamic properties at 706 state points including pressure, residual internal energy, first volume derivative of the residual internal energy, and residual isochoric heat capacity as a function of temperature and density. The equation of state is explicit in terms of the Helmholtz energy, allowing the determination of any thermodynamic property by differentiation. It is valid for temperatures \(0.6<T/T_{\mathrm{c}}<10\) and pressures \(p/p_{\mathrm{c}}<70\). High accuracy and good extrapolation behavior of the equation of state are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(a\) :

Helmholtz energy

\(c_{1, }c_{2 }\) :

Integration constants of the ideal Helmholtz energy

\(c_{v }\) :

Isochoric heat capacity

\(d_{i}\) :

Density exponents of the residual Helmholtz energy

\(h\) :

Enthalpy

\(l_{i}\) :

Density exponents of the exponential term of the residual Helmholtz energy

\(m\) :

Molecular mass

\(N\) :

Number of molecules in the simulation

\(n_{i}\) :

Coefficients of the residual Helmholtz energy

\(N_{i}\) :

Coefficients of the ancillary equations

\(p\) :

Pressure

\(r\) :

Radius

\(r_{\mathrm{c}}\) :

Cut-off radius

\(s\) :

Entropy

\(t\) :

Time

\(T\) :

Temperature

\(t_{i}\) :

Temperature exponents of the residual Helmholtz energy

\(u\) :

Potential energy/internal energy

\(V\) :

Volume

\(X\) :

Any thermodynamic property

\(\alpha \) :

Reduced Helmholtz energy

\(\beta _{i}\) :

Gaussian bell-shaped parameters

\(\gamma _{i}\) :

Gaussian bell-shaped parameters

\(\delta \) :

Reduced density

\(\varepsilon \) :

Energy parameter of the molecular model

\(\varepsilon _{i}\) :

Gaussian bell-shaped parameters

\(\eta _{i}\) :

Gaussian bell-shaped parameters

\(\theta \) :

\((1 - T/T_{\mathrm{c}})\) for the ancillary equations

\(\rho \) :

Density

\(\sigma \) :

Size parameter of the molecular model

\(\tau \) :

Inverse reduced temperature

c:

Critical

LJ:

Lennard-Jones

LJTS:

Lennard-Jones truncated and shifted

v:

Vapor

\(v\) :

Isochoric

0:

Reference

o:

Ideal

r:

Residual

\(\prime \) :

Saturated liquid

\(\prime \prime \) :

Saturated vapor

References

  1. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987)

    MATH  Google Scholar 

  2. P. Adams, J.R. Henderson, Mol. Phys. 73, 1383 (1991)

    Article  ADS  Google Scholar 

  3. P.J. Camp, M.P. Allen, Mol. Phys. 88, 1459 (1996)

    Article  ADS  Google Scholar 

  4. L.-J. Chen, J. Chem. Phys. 103, 10214 (1995)

    Article  ADS  Google Scholar 

  5. D.O. Dunikov, S.P. Malyshenko, V.V. Zhakhovskii, J. Chem. Phys. 115, 6623 (2001)

    Article  ADS  Google Scholar 

  6. M.J. Haye, C. Bruin, J. Chem. Phys. 100, 556 (1994)

    Article  ADS  Google Scholar 

  7. C.D. Holcomb, P. Clancy, J.A. Zollweg, Mol. Phys. 78, 437 (1993)

    Article  ADS  Google Scholar 

  8. M. Mareschal, R. Lovett, M. Baus, J. Chem. Phys. 106, 645 (1997)

    Article  ADS  Google Scholar 

  9. M.J.P. Nijmeijer, A.F. Bakker, C. Bruin, J.H. Sikkenk, J. Chem. Phys. 89, 3789 (1988)

    Article  ADS  Google Scholar 

  10. M. Rao, D. Levesque, J. Chem. Phys. 65, 3233 (1976)

    Article  ADS  Google Scholar 

  11. A. Trokhymchuk, J. Alejandre, J. Chem. Phys. 111, 8510 (1999)

    Article  ADS  Google Scholar 

  12. W. Shi, J.K. Johnson, Fluid Phase Equilib. 187–188, 171 (2001)

    Article  Google Scholar 

  13. B. Smit, J. Chem. Phys. 96, 8639 (1992)

    Article  ADS  Google Scholar 

  14. J. Vrabec, G.K. Kedia, G. Fuchs, H. Hasse, Mol. Phys. 104, 1509 (2006)

    Article  ADS  Google Scholar 

  15. J.J. Nicholas, K.E. Gubbins, W.B. Streett, D.J. Tildesley, Mol. Phys. 37, 1429 (1979)

    Article  ADS  Google Scholar 

  16. J.K. Johnson, J.A. Zollweg, K.E. Gubbins, Mol. Phys. 78, 591 (1993)

    Article  ADS  Google Scholar 

  17. J. Kolafa, I. Nezbada, Fluid Phase Equilib. 100, 1 (1994)

    Article  Google Scholar 

  18. M. Mecke, A. Müller, J. Winkelmann, J. Vrabec, J. Fischer, R. Span, W. Wagner, Int. J. Thermophys. 17, 391 (1996)

    Article  ADS  Google Scholar 

  19. M. Mecke, A. Müller, J. Winkelmann, J. Vrabec, J. Fischer, R. Span, W. Wagner, Int. J. Thermophys. 13, 1493 (1998)

  20. H.-O. May, P. Mausbach, Phys. Rev. E 85, 031201 (2012)

    Article  ADS  Google Scholar 

  21. S. Deublein, B. Eckl, J. Stoll, S.V. Lishchuk, G. Guevara-Carrion, C.W. Glass, T. Merker, M. Bernreuther, H. Hasse, J. Vrabec, Comput. Phys. Commun. 182, 2350 (2011)

    Article  ADS  Google Scholar 

  22. H. Flyvbjerg, H.G. Petersen, J. Chem. Phys. 91, 461 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Span, Multiparameter Equations of State (Springer, Berlin, 2000)

    Book  Google Scholar 

  24. U. Setzmann, W. Wagner, J. Phys. Chem. Ref. Data 20, 1061 (1991)

    Article  ADS  Google Scholar 

  25. E.W. Lemmon, M.O. McLinden, W. Wagner, J. Chem. Eng. Data 54, 3141 (2009)

    Article  Google Scholar 

  26. W. Wagner, A.J. Pruss, J. Phys. Chem. Ref. Data 31, 387 (2002)

    Article  ADS  Google Scholar 

  27. R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25, 1509 (1996)

    Article  ADS  Google Scholar 

  28. A. Ahmed, R.J. Sadus, J. Chem. Phys. 131, 174504 (2009)

    Article  ADS  Google Scholar 

  29. E.W. Lemmon, R.T. Jacobsen, J. Phys. Chem. Ref. Data 34, 69 (2005)

    Article  ADS  Google Scholar 

  30. E.W. Lemmon, W. Wagner, (to be published)

  31. G. Venkatarathnama, L.R. Oellrich, Fluid Phase Equilib. 301, 225 (2011)

    Article  Google Scholar 

  32. R. Span, W. Wagner, Int. J. Thermophys. 18, 1415 (1997)

    Article  ADS  Google Scholar 

  33. K.R.S. Shaul, A.J. Schultz, D.A. Kofke, Collect. Czech. Chem. Commun. 75, 447 (2010)

    Article  Google Scholar 

  34. R.J. Wheatley, Phys. Rev. Lett. 110, 200601 (2013)

    Article  ADS  Google Scholar 

  35. R.J. Wheatley, Private Communication (2013)

  36. R. Hellmann, Private Communication (2013)

  37. E.W. Lemmon, Presented at 18th Symp. Thermophys. Prop., Boulder, CO (2012)

  38. W. Wagner, Fortschr.-Ber. VDI (VDI-Verlag, Düsseldorf, 1974), p. 3

Download references

Acknowledgments

We thank E. W. Lemmon for his support during the development of the equation of state and G. Guevara-Carrion for her support in carrying out molecular simulation work. This project was funded by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Span.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thol, M., Rutkai, G., Span, R. et al. Equation of State for the Lennard-Jones Truncated and Shifted Model Fluid. Int J Thermophys 36, 25–43 (2015). https://doi.org/10.1007/s10765-014-1764-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1764-4

Keywords

Navigation