Skip to main content
Log in

Effective Thermal-Conductivity Measurement on Germanate Glass–Ceramics Employing the \(3\omega \) Method at High Temperature

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

It can be noted that the germanate glass–ceramic is a functional material with excellent thermal stability which can be used in optical devices. The temperature-dependent effective thermal conductivities of CaO–BaO–CoO–Al\(_{2}\)O\(_{3}\)–SiO\(_{2}\)–GeO\(_{2}\) glass–ceramics from 295.5 K to 780 K are determined using a \(3\omega \) method. One of the main advantages for the \(3\omega \) method is to diminish radiation errors effectively when the temperature is as high as 1000 K. Thermal conductivities of CaO–BaO–CoO–Al\(_{2}\)O\(_{3}\)–SiO\(_{2}\)–GeO\(_{2}\) increase with a rise in temperature. Effective thermal conductivities of a sample increase from \(1.55~\hbox {W}\cdot \hbox {m}^{-1}\cdot \hbox {K}^{-1}\) at 295.5 K to \(7.64~\hbox {W}\cdot \,\hbox {m}^{-1}\cdot \hbox {K}^{-1}\) at 698.1 K. The effective thermal conductivity of CaO–BaO–CoO–Al\(_{2}\)O\(_{3}\)–SiO\(_{2}\)–GeO\(_{2}\) glass–ceramic increases with a rise of temperature. This investigation can be used as a basis for the measurement of thermal properties of ceramic materials at higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.H. Dumbaugh, J.C. Lapp, J. Am. Ceram. Soc. 75, 2315 (1992)

    Article  Google Scholar 

  2. S.S. Bayya, B.B. Harbison, J.S. Sanghera, I.D. Aggarwal, J. Noncryst. Solids 212, 198 (1997)

    Article  ADS  Google Scholar 

  3. S.S. Bayya, G.D. Chin, J.S. Sanghera, I.D. Aggarwal, Opt. Express 14, 11687 (2006)

    Article  ADS  Google Scholar 

  4. D.M. Zhu, T. Kosugi, J. Noncryst. Solids 202, 88 (1996)

    Article  ADS  Google Scholar 

  5. D. Lezal, J. Pedlikova, P. Kostka, J. Bludska, M. Poulain, J. Zavadil, J. Noncryst. Solids 284, 288 (2001)

    Article  ADS  Google Scholar 

  6. S.S. Bayya, J.S. Sanghera, I.D. Aggarwal, J.A. Wojcik, J. Am. Ceram. Soc. 85, 3114 (2002)

    Article  Google Scholar 

  7. T. Lu, N. Fleck, Acta Mater. 46, 4755 (1998)

    Article  Google Scholar 

  8. W. Kingery, J. Am. Ceram. Soc. 44, 302 (1961)

    Article  Google Scholar 

  9. R.B. Stephens, Phys. Rev. B 13, 852 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  10. L. Gil, M.A. Ramos, A. Bringer, U. Buchenau, Phys. Rev. Lett. 70, 182 (1993)

    Article  ADS  Google Scholar 

  11. R.P. Bhatta, S. Annamalai, R.K. Mohr, M. Brandys, I.L. Pegg, B. Dutta, Rev. Sci. Instrum. 81, 114904 (2010)

    Article  ADS  Google Scholar 

  12. D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990)

    Article  ADS  Google Scholar 

  13. D.G. Cahill, R.O. Pohl, Phys. Rev. B 35, 4067 (1987)

    Article  ADS  Google Scholar 

  14. L. Qiu, X.H. Zheng, G.P. Su, D.W. Tang, Int. J. Thermophys. 34, 2261 (2013)

    Article  ADS  Google Scholar 

  15. L. Qiu, D.W. Tang, X.H. Zheng, G.P. Su, Rev. Sci. Instrum. 82, 045106 (2011)

    Article  ADS  Google Scholar 

  16. P.S. Davis, P.A. Barnes, Mater. Res. Soc. Symp. Proc. 626, Z5.4.1 (2000)

    Google Scholar 

  17. D.G. Cahill, J.R. Olson, H.E. Fischer, S.K. Watson, R.B. Stephens, R.H. Tait, T. Ashworth, R. Pohl, Phys. Rev. B 44, 12226 (1991)

    Article  ADS  Google Scholar 

  18. G. Yang, A.D. Migone, K.W. Johnson, Phys. Rev. B 45, 157 (1992)

    Article  ADS  Google Scholar 

  19. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, Oxford, 1959)

    Google Scholar 

  20. K. Watari, K. Ishizaki, F. Tsuchiya, J. Mater. Sci. 28, 3709 (1993)

    Article  ADS  Google Scholar 

  21. S.M. Marcus, R.L. Blaine, Thermochim. Acta 243, 231 (1994)

    Article  Google Scholar 

  22. N.A. Hegab, M. Fadel, M.A. Afifi, M.F. Shawer, J. Phys. D 33, 2223 (2000)

    Article  ADS  Google Scholar 

  23. D.G. Cahill, R.B. Stephens, R.H. Tait, S.K. Watson, R.O. Pohl, Appl. Phys. Lett. 65, 309 (1990)

    Article  Google Scholar 

  24. R.C. Zeller, R.O. Pohl, Phys. Rev. B 4, 2029 (1971)

    Article  ADS  Google Scholar 

  25. Z.D. Guan, Z.D. Zhang, J.S. Jiao, The Physical Properties of Inorganic Materials (Tsinghua University Press, Beijing, 1992), p. 136

    Google Scholar 

  26. Z.H. Xiao, A.X. Lu, J. Cent. South Univ. Sci. Technol. 42, 1934 (2011)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Project 51306183 supported by National Natural Science Foundation of China and National Basic Research Program of China (Grant No. 2012CB933200). The authors also thank Dr. Zhu Jie for his useful suggestions and interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Qiu or Xing-Hua Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, GP., Qiu, L., Zheng, XH. et al. Effective Thermal-Conductivity Measurement on Germanate Glass–Ceramics Employing the \(3\omega \) Method at High Temperature. Int J Thermophys 35, 336–345 (2014). https://doi.org/10.1007/s10765-014-1561-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1561-0

Keywords

Navigation