Skip to main content
Log in

Analysis of Transient Heat Conduction in a Hollow Cylinder Using Duhamel Theorem

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The objective of this paper is to derive the mathematical model of two-dimensional heat conduction at the inner and outer surfaces of a hollow cylinder which are subjected to a time-dependent periodic boundary condition. The substance is assumed to be homogenous and isotropic with time-independent thermal properties. Duhamel’s theorem is used to solve the problem for the periodic boundary condition which is decomposed by Fourier series. In this paper, the effects of the temperature oscillation frequency on the boundaries, the variation of the hollow cylinder thickness, the length of the cylinder, the thermophysical properties at ambient conditions, and the cylinder involved in some dimensionless numbers are studied. The obtained temperature distribution has two main characteristics: the dimensionless amplitude (\(A\)) and the dimensionless phase difference (\(\varphi \)). These results are shown with respect to Biot and Fourier and some other important dimensionless numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(c\) :

Specific heat capacity (\(\text{ J }\,{\cdot }\,\text{ kg }^{-1}\,{\cdot }\,\text{ K }^{-1}\))

\(h\) :

Convective heat transfer coefficient (\(\text{ W }\,{\cdot }\,\text{ m }^{-2}\,{\cdot }\,\text{ K }^{-1}\))

\(k\) :

Thermal conductivity (\(\text{ W }\,{\cdot }\,\text{ m }^{-1}\,{\cdot }\,\text{ K }^{-1}\))

\(r\) :

Radius (m)

\(l\) :

Length (m)

\(T, t\) :

Time (s)

\(\overline{t}\) :

Dimensionless time

\(\overline{r}\) :

Dimensionless radius

\(\overline{z}\) :

Dimensionless length

\(m\) :

Dimensionless thickness

\(x\) :

Ratio of outer radius to the length of hollow cylinder

\(A, A_{jns}\) :

Dimensionless amplitude of temperature

\(Bi\) :

Biot number

\(Fo\) :

Fourier number

\(M\) :

Defined in Eq. 37

\(Q\) :

Stored heat (J)

\(R\) :

Resistance

\(Z\) :

Impedance

\(X_{c}\) :

Reactance

\(\alpha \) :

Thermal diffusivity (\(\text{ m }^{2}{\cdot } \text{ s }^{-1}\))

\(\theta \) :

Temperature field

\(v,\omega , \mu \) :

Eigenvalues

\(\varphi , \varphi _{jns} \) :

Phase difference

\({\varPhi },\eta \) :

Eigen functions

\(\alpha _\mathrm{{n}}^{(\mathrm{{i}})}, \alpha _\mathrm{{n}}^{( \mathrm{{o}})}\) :

Defined by Eq. 18

\(\beta _\mathrm{{n}}^{(\mathrm{{o}} )}, \beta _\mathrm{{n}}^{(\mathrm{{i}})}\) :

Defined by Eq. 18

\(C_{n}^{(i)}, C_{n}^{(o)}\) :

Defined by Eq. 20

\(\varDelta \) :

Defined by Eq. 19

\(\gamma _{jni}, \gamma _{jno}\) :

Defined by Eq. 35

\(\tau \) :

Time (s)

i:

Inner

o:

Outer

\(0\) :

Steady-state

\(1\) :

Transient-state

References

  1. I. Dincer, Int. Commun. Heat Mass Transf. 22, 123 (1995)

    Article  Google Scholar 

  2. I. Dincer, Int. J. Energy Res. 18, 741 (1994)

    Article  Google Scholar 

  3. I. Dincer, J. Food Eng. 26, 453 (1995)

    Article  Google Scholar 

  4. I. Dincer, Energy Convers. Manag. 36, 1175 (1995)

    Article  Google Scholar 

  5. J.P. Holman, Heat Transfer, 4th edn. (McGraw-Hill, New York, 1976)

    Google Scholar 

  6. M.N. Özisik, Heat Conduction, 2nd edn. (Wiley, New York, 1993)

    Google Scholar 

  7. R. Trostel, Ingenieur Arch. 24, 373 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hrsg. vom Verein Deutscher Ingenieure (VDI), Wärmeatlas, Ed 14–17 (Düsseldorf, 2003)

  9. X. Lu, P. Tervola, M. Viljanen, Int. J. Heat Mass Transf. 49, 1107 (2006)

    Article  MATH  Google Scholar 

  10. L.S. Han, J. Thermophys. Heat Transf. 1, 184 (1987)

    Article  ADS  Google Scholar 

  11. G.E. Cossali, Int. J. Therm. Sci. 48, 722 (2009)

    Article  Google Scholar 

  12. J. Khedari, P. Benigni, J. Rogez, J.C. Mathieu, Rev. Sci. Instrum. 66, 193 (1995)

    Article  ADS  Google Scholar 

  13. J. Khedari, G. Csurks, J. Hirunlabh, in Proceedings of the International Conference on Contribution of Cognition to Modeling, Lyon-Villeurbanne, 1996, pp. 9.10–9.13

  14. C. Wang, Y. Liu, A. Mandelis, J. Shen, J. Appl. Phys. 101, 083503 (2007)

    Article  ADS  Google Scholar 

  15. G. Xie, Z. Chen, C. Wang, A. Mandelis, Rev. Sci. Instrum. 80, 034903 (2009)

    Article  ADS  Google Scholar 

  16. C. Wang, Y. Liu, A. Mandelis, J. Appl. Phys. 97, 014911 (2005)

    Article  ADS  Google Scholar 

  17. A.Z. Sahin, Int. Commun. Heat Mass Transf. 22, 89 (1995)

    Article  Google Scholar 

  18. A. Sengupta, M.A. Sodha, M.P. Verma, R.L. Sawhney, Int. J. Energy Res. 17, 243 (1993)

    Article  Google Scholar 

  19. G. Atefi, M.A. Abdous, A. Ganjehkaviri, N. Moalemi, J. Mech. Eng. Sci. 223, 1889 (2009)

    Article  Google Scholar 

  20. A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions (Springer, New York, 2001)

    Book  MATH  Google Scholar 

  21. J.V. Beck, K.D. Cole, A. Haji-Sheikh, B. Litkouhi, Heat Conduction Using Green’s Functions (Hemisphere, Washington, DC, 1992)

    Google Scholar 

  22. C. Wang, Y. Liu, A. Mandelis, J. Appl. Phys. 96, 3756 (2004)

    Article  ADS  Google Scholar 

  23. M.A. Abdous, H. Barzegar Avval, P. Ahmadi, Int. J. Thermophys. 33, 143 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Abdous.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazeli, H., Abdous, M.A., Karabi, H. et al. Analysis of Transient Heat Conduction in a Hollow Cylinder Using Duhamel Theorem. Int J Thermophys 34, 350–365 (2013). https://doi.org/10.1007/s10765-013-1418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1418-y

Keywords

Navigation