Skip to main content
Log in

African Primate Assemblages Exhibit a Latitudinal Gradient in Dispersal Limitation

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated that dispersal limitation, which refers to the limited ability of individuals to reach distant geographic areas, is an important influence on the species that are found in primate assemblages. In this study, we investigate the relative influences of dispersal limitation and environmental filtering in 131 African primate assemblages in 9 biogeographic regions throughout sub-Saharan Africa. Specifically, we evaluate the dispersal-ecological specialization hypothesis, which posits that there are trade-offs between dispersal ability and ecological specialization that are influenced by climatic variation along latitudinal gradients. The hypothesis predicts that species in assemblages near the equator, where climatic conditions are more stable, will exhibit stronger dispersal limitation and greater ecological specialization than species within assemblages located further from the equator, where climate is more variable. In contrast, assemblages located at higher latitudes are expected to be influenced more strongly by environmental filtering than dispersal limitation. We used hierarchical cluster analysis to identify regions, conducted partial Mantel tests to evaluate the contributions of dispersal limitation and environmental filtering in each region, and evaluated predictors of those contributions with linear regression. In all regions, dispersal limitation was a stronger predictor of community similarity than was environmental filtering, yet the strength of dispersal limitation varied. Dispersal limitation was greatest at low latitudes and declined with increasing absolute latitude. Thus, primate assemblages exhibited a significant latitudinal gradient in dispersal limitation, but not in environmental filtering. These results support aspects of the dispersal-ecological specialization hypothesis and call for future mechanistic studies to address this broad-scale pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arita, H. T., & Vazquez-Dominguez, E. (2008). The tropics: Cradle, museum or casino? A dynamic null model for latitudinal gradients of species diversity. Ecology Letters, 11, 653–663.

    Article  PubMed  Google Scholar 

  • Arnold, C., Matthews, L. J., & Nunn, C. L. (2010). The 10kTrees website: A new online resource for primate phylogeny. Evolutionary Anthropology, 19, 114–118.

    Article  Google Scholar 

  • Baselga, A., Jimenez-Valverde, A., & Niccolini, G. (2007). A multiple-site similarity measure independent of richness. Biology Letters, 3(6), 642–645.

    Google Scholar 

  • Baselga, A., Lobo, J. M., Svenning, J. C., Aragon, P., & Araujo, M. B. (2012). Dispersal ability modulates the strength of the latitudinal richness gradient in European beetles. Global Ecology and Biogeography, 21, 1106–1113.

    Article  Google Scholar 

  • Beaudrot, L., & Marshall, A. J. (2011). Primate communities are structured more by dispersal limitation than by niches. Journal of Animal Ecology, 80, 332–341.

    Article  PubMed  Google Scholar 

  • Beaudrot, L., Rejmánek, M., & Marshall, A. J. (2013). Dispersal modes affect tropical forest assembly across trophic levels. Ecography, 36, 984–993.

    Article  Google Scholar 

  • Bowman, J., Jaeger, J. A. G., & Fahrig, L. (2002). Dispersal distance of mammals is proportional to home range size. Ecology, 83, 2049–2055.

    Article  Google Scholar 

  • Carnicer, J., Stefanescu, C., Vila, R., Dinca, V., Font, X., & Penuelas, J. (2013). A unified framework for diversity gradients: The adaptive trait continuum. Global Ecology and Biogeography, 22, 6–18.

    Article  Google Scholar 

  • Carstensen, D. W., Lessard, J. P., Holt, B. G., Borregaard, M. K., & Rahbek, C. (2013). Introducing the biogeographic species pool. Ecography, 36, 1–9.

    Article  Google Scholar 

  • Case, T. J., & Taper, M. L. (2000). Interspecific competition, environmental gradients, gene flow, and the coevolution of species' borders. American Naturalist, 155, 583–605.

    Article  PubMed  Google Scholar 

  • Cavender-Bares, J., Kozak, K. H., Fine, P. V. A., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693–715.

    Article  PubMed  Google Scholar 

  • Chase, J. M., Amarasekare, P., Cottenie, K., Gonzalez, A., Holt, R. D., Holyoak, M., et al. (2005). Competing theories for competitive metacommunities. In M. Holyoak, M. A. Leibold, & R. D. Holt (Eds.), Metacommunities: Spatial dynamics and ecological communities (pp. 334–354). Chicago: University of Chicago Press.

  • Chase, J. M., & Myers, J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2351–2363.

    Article  Google Scholar 

  • Cottenie, K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters, 8, 1175–1182.

    Article  PubMed  Google Scholar 

  • Cowlishaw, G., & Hacker, J. E. (1997). Distribution, diversity and latitude in African primates. The American Naturalist, 150, 505–512.

    Article  CAS  PubMed  Google Scholar 

  • Dapporto, L., Ramazzotti, M., Fattorini, S., Talavera, G., Vila, R., & Dennis, R. L. H. (2013a). recluster: An unbiased clustering procedure for beta-diversity turnover. Ecography. doi:10.1111/j.1600-0587.2013.00444.x.

  • Dapporto, L., Ramazzotti, M., Fattorini, S., Vila, R., Talavera, G., & Dennis, R. L. H. (2013b). recluster: Ordination methods for the analysis of beta-diversity indices. R package version 2.5.

  • Eeley, H. A. C., & Foley, R. A. (1999). Species richness, species range size and ecological specialisation among African primates: Geographical patterns and conservation implications. Biodiversity and Conservation, 8, 1033–1056.

    Article  Google Scholar 

  • Eeley, H. A. C., & Lawes, M. J. (1999). Large-scale patterns of species richness and species range size in anthropoid primates. In J. G. Fleagle, C. Janson, & K. Reed (Eds.), Primate communities (pp. 191–219). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Fielding, A. H. (2007). Cluster and classification techniques for the biosciences. New York: Cambridge University Press.

    Google Scholar 

  • Fleagle, J. G., Janson, C. H., & Reed, K. E. (Eds.). (1999). Primate communities. New York: Cambridge University Press.

    Google Scholar 

  • Gandon, S., & Michalakis, Y. (2001). Multiple causes of the evolution of dispersal. Oxford: Oxford University Press.

    Google Scholar 

  • Gavilanez, M. M., & Stevens, R. D. (2013). Role of environmental, historical and spatial processes in the structure of Neotropical primate communities: Contrasting taxonomic and phlogenetic perspectives. Global Ecology and Biogeography, 22, 607–619.

    Article  Google Scholar 

  • Gompper, M. E., & Gittleman, J. L. (1991). Home range scaling: Intraspecific and comparative trends. Oecologia, 87, 343–348.

    Article  Google Scholar 

  • Grubb, P. (1982). Refuges and dispersal in the speciation of African forest mammals. In G. T. Prance (Ed.), Biological diversification in the tropics (pp. 537–553). New York: Columbia University Press.

    Google Scholar 

  • Guillot, G., & Rousset, F. (2013). Dismantling the Mantel tests. Methods in Ecology and Evolution, 4, 336–344.

    Article  Google Scholar 

  • Harcourt, A. H. (1998). Ecological indicators of risk for Primates, as judged by species’ susceptibility to logging. In T. Caro (Ed.), Behavioral ecology and conservation (pp. 56–79). New York: Oxford University Press.

    Google Scholar 

  • Harcourt, A. H. (2000). Latitude and latitudinal extent: A global analysis of the Rapoport effect in a tropical mammalian taxon: primates. Journal of Biogeography, 27, 1169–1182.

    Article  Google Scholar 

  • Harcourt, A. H. (2012). Human biogeography. Berkeley: University of California Press.

    Book  Google Scholar 

  • Harcourt, A. H., & Wood, M. A. (2012). Rivers as barriers to primate distributions in Africa. International Journal of Primatology, 33, 168–183.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • Holt, B. G., Lessard, J. P., Borregaard, M. K., Fritz, S. A., Araujo, M. B., Dimitrov, D., et al. (2013). An update of Wallace’s zoogeographic regions of the world. Science, 339, 74–78.

  • Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.

  • Hubbell, S. P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166–172.

    Article  Google Scholar 

  • Janzen, D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101, 233–249.

    Article  Google Scholar 

  • Jocque, M., Field, R., Brendonck, L., & De Meester, L. (2010). Climatic control of dispersal-ecological specialization trade-offs: A metacommunity process at the heart of the latitudinal diversity gradient? Global Ecology and Biogeography, 19, 244–252.

    Article  Google Scholar 

  • Kamilar, J. M. (2009). Environmental and geographic correlates of the taxonomic structure of primate communities. American Journal of Physical Anthropology, 139, 382–393.

    Article  PubMed  Google Scholar 

  • Kamilar, J. M., & Beaudrot, L. (2013). Understanding primate communities: Recent developments and future directions. Evolutionary Anthropology, 22, 174–185.

    Article  PubMed  Google Scholar 

  • Kamilar, J. M., & Cooper, N. (2013). Phylogenetic signal in primate behavior, ecology and life history. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20123041.

    Article  Google Scholar 

  • Kamilar, J. M., & Guidi, L. M. (2010). The phylogenetic structure of primate communities: variation within and across continents. Journal of Biogeography, 37(5), 801–813.

    Google Scholar 

  • Kamilar, J. M., Martin, S. K., & Tosi, A. J. (2009). Combining biogeographic and phylogenetic data to examine primate speciation: An example using Cercopithecin monkeys. Biotropica, 41, 514–519.

    Article  Google Scholar 

  • Kamilar, J. M., & Muldoon, K. M. (2010). The climatic niche diversity of Malagasy primates: A phylogenetic perspective. Plos One, 5, e11073.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kreft, H., & Jetz, W. (2010). A framework for delineating biogeographical regions based on species distributions. Journal of Biogeography, 37, 2029–2053.

    Article  Google Scholar 

  • Laurance, W. F. (1990). Comparative responses of five arboreal marsupials to tropical forest fragmentation. Journal of Mammalogy, 71, 641–653.

    Article  Google Scholar 

  • Leithead, M., Anand, M., Duarte, L. D., & Pillar, V. D. (2012). Causal effects of latitude, disturbance and dispersal limitation on richness in a recovering temperate, subtropical and tropical forest. Journal of Vegetation Science, 23, 339–351.

    Article  Google Scholar 

  • Linder, H. P., de Klerk, H. M., Born, J., Burgess, N. D., Fjeldsa, J., & Rahbek, C. (2012). The partitioning of Africa: Statistically defined biogeographical regions in sub-Saharan Africa. Journal of Biogeography, 39, 1189–1205.

    Article  Google Scholar 

  • Lindstedt, S. L., Miller, B. J., & Buskirk, S. W. (1986). Home range, time, and body size in mammals. Ecology, 67, 413–418.

    Article  Google Scholar 

  • Magurran, A. E. (1988). Ecological diversity and its measurements. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Munguia, M., Peterson, A. T., & Sanchez-Cordero, V. (2008). Dispersal limitation and geographical distributions of mammal species. Journal of Biogeography, 35, 1879–1887.

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., et al. (2013). vegan: Community Ecology Package. R. p. v. 2.0-7. Available at http://CRAN.R-project.org/package=vegan

  • R Development Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Rapoport, E. H. (1982). Areography: Geographical strategies of species. New York: Pergamon Press.

    Google Scholar 

  • Reed, K. E., & Bidner, L. R. (2004). Primate communities: Past, present and possible future. Yearbook of Physical Anthropology, 47, 2–39.

    Article  Google Scholar 

  • Reed, K. E., & Fleagle, J. G. (1995). Geographic and climatic control of primate diversity. Proceedings of the National Academy of Sciences of the USA, 92, 7874–7876.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rovero, F., Marshall, A. R., Jones, T., & Perkin, A. (2009). The primates of the Udzungwa Mountains: Diversity, ecology and conservation. Journal of Anthropological Science, 87, 93–126.

    Google Scholar 

  • Salisbury, C. L., Seddon, N., Cooney, C. R., & Tobias, J. A. (2012). The latitudinal gradient in dispersal constraints: Ecological specialisation drives diversification in tropical birds. Ecology Letters, 15, 847–855.

    Article  PubMed  Google Scholar 

  • Schwarzkopf, L., & Rylands, A. (1989). Primate species richness in relation to habitat structure in Amazonian rainforest fragments. Biological Conservation, 48, 1–12.

    Article  Google Scholar 

  • Seber, G. A. F. (1984). Multivariate observations. New York: John Wiley & Sons.

    Book  Google Scholar 

  • Smouse, P. E., Long, J. C., & Sokal, R. R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology, 35, 627–632.

    Article  Google Scholar 

  • Soininen, J., McDonald, R., & Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography, 30, 3–12.

    Article  Google Scholar 

  • Steinbauer, M. J., Dolos, K., Reineking, B., & Beierkuhnlein, C. (2012). Current measures for distance decay in similarity of species composition are influenced by study extent and grain size. Global Ecology and Biogeography, 21, 1203–1212. doi:10.1111/j.1466-8238.2012.00772.x.

  • Stevens, G. C. (1989). The latitudinal gradient in geographical range: How so many species coexist in the tropics. American Naturalist, 133, 240–256.

    Article  Google Scholar 

  • Tosi, A. J., Detwiler, K. M., & Disotell, T. R. (2005). X-chromosomal window into the evolutionary history of the guenons (Primates : Cercopithecini). Molecular Phylogenetics and Evolution, 36, 58–66.

    Article  CAS  PubMed  Google Scholar 

  • Tuomisto, H., Ruokolainen, L., & Ruokolainen, K. (2012). Modelling niche and neutral dynamics: On the ecological interpretation of variation partitioning results. Ecography, 35, 961–971.

    Article  Google Scholar 

  • Vavrek, M. J. (2011). Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontologia Electronica, 14:1T. http://palaeo-electronica.org/2011_1/238/index.html. Accessed 1 Oct 2013.

  • Weir, J. T., & Schluter, D. (2007). The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science, 315, 1574–1576.

    Article  CAS  PubMed  Google Scholar 

  • Whitmee, S., & Orme, C. D. L. (2013). Predicting dispersal distance in mammals: a traitbased approach. Journal of Animal Ecology, 82(1), 211–221.

    Google Scholar 

  • Wiens, J. J., & Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology & Evolution, 19, 639–644.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Joanna Setchell for the invitation to contribute to this International Journal of Primatology special issue following the 2013 American Association of Physical Anthropologists (AAPA) symposium on primate communities and for editing this paper; Jillian DeBenny and Joshua Kohn for African primate data compilation; Catherine Graham, Sandy Harcourt, Marcel Rejmánek, Kelly Stewart, Katie Feilen, Nicole Sharp, Julie Linden, Dena Clink, and Jay Read for discussion; and two anonymous reviewers for comments that improved this manuscript. This work was supported by University of California Davis fellowships to L. Beaudrot from the Graduate Group in Ecology and the Office of Graduate Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Beaudrot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Species data references (Appendix S1), locations of sites included and excluded from the study (Appendix S2), the cluster analysis dendrogram (Appendix S3), and partial Mantel test results with an alternative similarity index (βsim index; Appendix S4) are available online. (DOCX 214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaudrot, L., Kamilar, J.M., Marshall, A.J. et al. African Primate Assemblages Exhibit a Latitudinal Gradient in Dispersal Limitation. Int J Primatol 35, 1088–1104 (2014). https://doi.org/10.1007/s10764-014-9773-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-014-9773-5

Keywords

Navigation