Skip to main content

Advertisement

Log in

The Use (and Misuse) of Phylogenetic Trees in Comparative Behavioral Analyses

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Phylogenetic comparative methods play a critical role in our understanding of the adaptive origin of primate behaviors. To incorporate evolutionary history directly into comparative behavioral research, behavioral ecologists rely on strong, well-resolved phylogenetic trees. Phylogenies provide the framework on which behaviors can be compared and homologies can be distinguished from similarities due to convergent or parallel evolution. Phylogenetic reconstructions are also of critical importance when inferring the ancestral state of behavioral patterns and when suggesting the evolutionary changes that behavior has undergone. Improvements in genome sequencing technologies have increased the amount of data available to researchers. Recently, several primate phylogenetic studies have used multiple loci to produce robust phylogenetic trees that include hundreds of primate species. These trees are now commonly used in comparative analyses and there is a perception that we have a complete picture of the primate tree. But how confident can we be in those phylogenies? And how reliable are comparative analyses based on such trees? Herein, we argue that even recent molecular phylogenies should be treated cautiously because they rely on many assumptions and have many shortcomings. Most phylogenetic studies do not model gene tree diversity and can produce misleading results, such as strong support for an incorrect species tree, especially in the case of rapid and recent radiations. We discuss implications that incorrect phylogenies can have for reconstructing the evolution of primate behaviors and we urge primatologists to be aware of the current limitations of phylogenetic reconstructions when applying phylogenetic comparative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ané, C., Larget, B., Baum, D. A., Smith, S. D., & Rokas, A. (2007). Bayesian estimation of concordance among gene trees. Molecular Biology and Evolution, 24, 412–426.

    PubMed  Google Scholar 

  • Arnason, U., Adegoke, J. A., Gullberg, A., Harley, E. H., Janke, A., & Kullberg, M. (2008). Mitogenomic relationships of placental mammals and molecular estimates of their divergences. Gene, 421, 37–51.

    CAS  PubMed  Google Scholar 

  • Arnold, C., Matthews, L. J., & Nunn, C. L. (2010). The 10kTrees website: A new online resource for primate phylogeny. Evolutionary Anthropology: Issues, News, and Reviews, 19, 114–118.

    Google Scholar 

  • Arnold, C., & Nunn, C. L. (2010). Phylogenetic targeting of research effort in evolutionary biology. The American Naturalist, 176, 601–612.

    PubMed  Google Scholar 

  • Benefit, B. R., & McCrossin, M. L. (1991). Ancestral facial morphology of Old World higher primates. Proceedings of the National Academy of Sciences of the USA, 88, 5267–5271.

    CAS  PubMed  Google Scholar 

  • Bergey, C. M., Pozzi, L., Disotell, T. R., & Burrell, A. S. (2013). A new method for genome-wide marker development and genotyping holds great promise for molecular primatology. International Journal of Primatology, 34(2), 303–314.

    Google Scholar 

  • Bininda-Emonds, O. R. P. (2004). The evolution of supertrees. Trends in Ecology & Evolution, 19, 315–322.

    Google Scholar 

  • Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., et al. (2007). The delayed rise of present-day mammals. Nature, 446, 507–512.

    CAS  PubMed  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., & Steel, M. A. (2002). The super(tree) of life: Procedures, Problems, and Prospects. Annual Review of Ecology and Systematics, 33, 265–289.

    Google Scholar 

  • Blair, M. E., & Melnick, D. J. (2012). Genetic evidence for dispersal by both sexes in the Central American squirrel monkey, Saimiri oerstedii citrinellus. American Journal of Primatology, 74, 37–47.

    Google Scholar 

  • Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745.

    PubMed  Google Scholar 

  • Bowler, M., Knogge, C., Heymann, E. W., & Zinner, D. (2012). Multilevel societies in New World primates? Flexibility may characterize the organization of Peruvian red uakaris (Cacajao calvus ucayalii). International Journal of Primatology, 33, 1110–1124.

    PubMed Central  PubMed  Google Scholar 

  • Burrell, A. S., Jolly, C. J., Tosi, A. J., & Disotell, T. R. (2009). Mitochondrial evidence for the hybrid origin of the kipunji, Rungwecebus kipunji (Primates: Papionini). Molecular Phylogenetics and Evolution, 51, 340–348.

    CAS  PubMed  Google Scholar 

  • Chan, Y.-C., Roos, C., Inoue-Murayama, M., Inoue, E., Shih, C.-C., Pei, K. J.-C., et al. (2010). Mitochondrial genome sequences effectively reveal the phylogeny of Hylobates gibbons. PloS One, 5, e14419.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chatterjee, H. J., Ho, S. Y. W., Barnes, I., & Groves, C. (2009). Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evolutionary Biology, 9, 259.

    PubMed Central  PubMed  Google Scholar 

  • Chaves, P. B., Alvarenga, C. S., Possamai, C. D. B., Dias, L. G., Boubli, J. P., Strier, K. B., et al. (2011). Genetic diversity and population history of a critically endangered primate, the northern muriqui (Brachyteles hypoxanthus). PloS One, 6, e20722.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiou, K. L., Pozzi, L., Lynch Alfaro, J. W., & Di Fiore, A. (2011). Pleistocene diversification of living squirrel monkeys (Saimiri spp.) inferred from complete mitochondrial genome sequences. Molecular Phylogenetics and Evolution, 59, 736–745.

    PubMed  Google Scholar 

  • Cortés-Ortiz, L., Duda, T. F., Canales-Espinosa, D., García-Orduña, F., Rodríguez-Luna, E., & Bermingham, E. (2007). Hybridization in large-bodied New World primates. Genetics, 176, 2421–2425.

    PubMed  Google Scholar 

  • Cronin, J., & Sarich, V. (1976). Molecular evidence for dual origin of mangabeys among Old World monkeys. Nature, 260, 700–702.

    CAS  PubMed  Google Scholar 

  • Davenport, T. R. B., Stanley, W. T., Sargis, E. J., De Luca, D. W., Mpunga, N. E., Machaga, S. J., et al. (2006). A new genus of African monkey, Rungwecebus: Morphology, ecology, and molecular phylogenetics. Science, 312, 1378–1381.

    CAS  PubMed  Google Scholar 

  • Degnan, J. H., & Rosenberg, N. A. (2006). Discordance of species trees with their most likely gene trees. PLoS Genetics, 2, e68.

    PubMed Central  PubMed  Google Scholar 

  • Degnan, J. H., & Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution, 24, 332–340.

    Google Scholar 

  • Delsuc, F., Brinkmann, H., & Philippe, H. (2005). Phylogenomics and the reconstruction of the tree of life. Nature Reviews Genetics, 6, 361–375.

    CAS  PubMed  Google Scholar 

  • Detwiler, K. M., Burrell, A. S., & Jolly, C. J. (2005). Conservation implications of hybridization in African Cercopithecine monkeys. International Journal of Primatology, 26, 661–684.

    Google Scholar 

  • Di Fiore, A., & Rendall, D. (1994). Evolution of social organization: A reappraisal for primates by using phylogenetic methods. Proceedings of the National Academy of Sciences of the USA, 91, 9941–9945.

    PubMed  Google Scholar 

  • Disotell, T. R. (1994). Generic level relationships of the Papionini (Cercopithecidae). American Journal of Physical Anthropology, 94, 47–57.

    CAS  PubMed  Google Scholar 

  • Dobson, S. D. (2012). Coevolution of facial expression and social tolerance in macaques. American Journal of Primatology, 74, 229–235.

    PubMed  Google Scholar 

  • Dunbar, R. I. M. (1984). Reproductive decisions: An economic analysis of gelada baboon social strategies. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards, S. V. (2009). Is a new and general theory of molecular systematics emerging? Evolution, 63, 1–19.

    CAS  PubMed  Google Scholar 

  • Fabre, P.-H., Rodrigues, A., & Douzery, E. J. P. (2009). Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA. Molecular Phylogenetics and Evolution, 53, 808–825.

    Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.

    Google Scholar 

  • Finarelli, J. A., & Flynn, J. J. (2006). Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): The effects of incorporating data from the fossil record. Systematic Biology, 55, 301–313.

    PubMed  Google Scholar 

  • Finstermeier, K., Zinner D., Brameier M., Meyer M., Kreuz E., Hofreiter M., et al. (2013). A mitogenomic phylogeny of living primates. PloS One 8.7, e69504.

  • Fleagle, J., & McGraw, W. (1999). Skeletal and dental morphology supports diphyletic origin of baboons and mandrills. Proceedings of the National Academy of Sciences of the USA, 96, 1157–1161.

    CAS  PubMed  Google Scholar 

  • Galat-Luong, A., Galat, G., & Hagell, S. (2006). The social and ecological flexibility of Guinea baboons: Implications for Guinea baboon social organization and male strategies. In L. Swedell & S. Leigh (Eds.), Reproduction and fitness in baboons: Behavioral, ecological, and life history perspectives (pp. 105–121). New York: Springer.

  • Garland, T., Harvey, P., & Ives, A. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology, 41, 18–32.

    Google Scholar 

  • Gilbert, C. C. (2007). Craniomandibular morphology supporting the diphyletic origin of mangabeys and a new genus of the Cercocebus/Mandrillus clade, Procercocebus. Journal of Human Evolution, 53, 69–102.

    PubMed  Google Scholar 

  • Gligor, M., Ganzhorn, J. U., Rakotondravony, D., Ramilijaona, O. R., Razafimahatratra, E., Zischler, H., et al. (2009). Hybridization between mouse lemurs in an ecological transition zone in southern Madagascar. Molecular Ecology, 18, 520–533.

    CAS  PubMed  Google Scholar 

  • Grafen, A. (1989). The phylogenetic regression. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 326, 119–157.

    CAS  PubMed  Google Scholar 

  • Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., et al. (2010). A draft sequence of the Neandertal genome. Science, 328, 710–722.

    CAS  PubMed  Google Scholar 

  • Grueter, C. C., Chapais, B., & Zinner, D. (2012). Evolution of multilevel social systems in nonhuman primates and humans. International Journal of Primatology, 33, 1002–1037.

    PubMed Central  PubMed  Google Scholar 

  • Harris, E. E., & Disotell, T. R. (1998). Nuclear gene trees and the phylogenetic relationships of the mangabeys (Primates: Papionini). Molecular Biology and Evolution, 15, 892–900.

    CAS  PubMed  Google Scholar 

  • Harrison, T. (2010). Apes among the tangled branches of human origins. Science, 327, 532.

    CAS  PubMed  Google Scholar 

  • Harvey, P., Brown, A., Smith, J., & Nee, S. (1996). New uses for new phylogenies. Oxford: Oxford University Press.

    Google Scholar 

  • Harvey, P., & Pagel, M. (1991). The comparative method in evolutionary biology. Oxford Series in Ecology and Evolution, Vol 1. Oxford: Oxford University Press.

  • Heled, J., & Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27, 570–580.

    CAS  PubMed  Google Scholar 

  • Henzi, P., & Barrett, L. (2003). Evolutionary ecology, sexual conflict, and behavioral differentiation among baboon populations. Evolutionary Anthropology, 12, 217–230.

    Google Scholar 

  • Henzi, S. P., & Barrett, L. (2005). The historical socioecology of savanna baboons (Papio hamadryas). Journal of Zoology, 265, 215–226.

    Google Scholar 

  • Hillis, D. M., Pollock, D. D., McGuire, J. A., & Zwickl, D. J. (2003). Is sparse taxon sampling a problem for phylogenetic inference? Systematic Biology, 52, 124–126.

    PubMed Central  PubMed  Google Scholar 

  • Hinde, K., & Milligan, L. A. (2011). Primate milk: Proximate mechanisms and ultimate perspectives. Evolutionary Anthropology, 20, 9–23.

    PubMed  Google Scholar 

  • Hodgson, J. A., Sterner, K. N., Matthews, L. J., Burrell, A. S., Rachana, A. J., Raaum, R. L., et al. (2009). Successive radiations, not stasis, in the South American primate fauna. Proceedings of the National Academy of Sciences of the USA, 106, 5534–5539.

    CAS  PubMed  Google Scholar 

  • Jameson, N. M., Hou, Z.-C., Sterner, K. N., Weckle, A., Goodman, M., Steiper, M. E., et al. (2011). Genomic data reject the hypothesis of a prosimian primate clade. Journal of Human Evolution, 61, 295–305.

    PubMed  Google Scholar 

  • Jolly, C. J. (1993). Species, subspecies, and baboon systematics. In W. H. Kimbell & L. B. Martin (Eds.), Species, species concepts, and primate evolution (pp. 67–107). New York: Plenum Press.

    Google Scholar 

  • Jolly, C. J. (2007). Baboons, mandrills, and mangabeys. Afro-papionin socioecology in a phylogenetic perspective. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 240–251). New York: Oxford University Press.

    Google Scholar 

  • Jolly, C. J. (2009). Fifty years of looking at human evolution. Current Anthropology, 50, 187–199.

    PubMed  Google Scholar 

  • Jones, T., Ehardt, C. L., Butynski, T. M., Davenport, T. R. B., Mpunga, N. E., Machaga, S. J., et al. (2005). The highland mangabey Lophocebus kipunji: A new species of African monkey. Science, 308, 1161–1164.

  • Kawai, M., Dunbar, R., Ohsawa, H., & Mori, U. (1983). Social organization of gelada baboons: Social units and definitions. Primates, 24, 13–24.

    Google Scholar 

  • Keller, C., Roos, C., Groeneveld, L. F., Fischer, J., & Zinner, D. (2010). Introgressive hybridization in southern African baboons shapes patterns of mtDNA variation. American Journal of Physical Anthropology, 142, 125–136.

    CAS  PubMed  Google Scholar 

  • Knowles, L. L. (2009). Estimating species trees: Methods of phylogenetic analysis when there is incongruence across genes. Systematic Biology, 58, 463–467.

    PubMed  Google Scholar 

  • Kubatko, L. S., Carstens, B. C., & Knowles, L. L. (2009). STEM: Species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics, 25, 971–973.

    Google Scholar 

  • Kubatko, L. S., & Degnan, J. H. (2007). Inconsistency of phylogenetic estimates from concatenated data under coalescence. Systematic Biology, 56, 17–24.

    CAS  PubMed  Google Scholar 

  • Kummer, H. (1968). Social organization of hamadryas baboons. Chicago: The University of Chicago Press.

    Google Scholar 

  • Larget, B. R., Kotha, S. K., Dewey, C. N., & Ané, C. (2010). BUCKy: Gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics, 26, 2910–2911.

    Google Scholar 

  • Leaché, A. D., & Rannala, B. (2011). The accuracy of species tree estimation under simulation: A comparison of methods. Systematic Biology, 60, 126–137.

    PubMed  Google Scholar 

  • Liu, L. (2008). BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics, 24, 2542–2543.

  • Liu, L., Yu, L., & Edwards, S. V. (2010). A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evolutionary Biology, 10, 302.

    PubMed Central  PubMed  Google Scholar 

  • Liu, L., Yu, L., Pearl, D. K., & Edwards, S. V. (2009). Estimating species phylogenies using coalescence times among sequences. Systematic Biology, 58, 468–477.

    CAS  PubMed  Google Scholar 

  • MacLean, E. L., Matthews, L. J., Hare, B. A., Nunn, C. L., Anderson, R. C., Aureli, F., et al. (2012). How does cognition evolve? Phylogenetic comparative psychology. Animal Cognition, 15, 223–238.

    PubMed  Google Scholar 

  • Maddison, W. P. (1997). Gene trees in species trees. Systematic Biology, 46, 523.

    Google Scholar 

  • Maddison, W. P., & Knowles, L. L. (2006). Inferring phylogeny despite incomplete lineage sorting. Systematic Biology, 55, 21.

    PubMed  Google Scholar 

  • Matsui, A., Rakotondraparany, F., Munechika, I., Hasegawa, M., & Horai, S. (2009). Molecular phylogeny and evolution of prosimians based on complete sequences of mitochondrial DNAs. Gene, 441, 53–66.

    CAS  PubMed  Google Scholar 

  • Matthews, L. J. (2012). Variations in sexual behavior among capuchin monkeys function for conspecific mate recognition: A phylogenetic analysis and a new hypothesis for female proceptivity in tufted capuchins. American Journal of Primatology, 74, 287–298.

    PubMed  Google Scholar 

  • Meng, C., & Kubatko, L. S. (2009). Detecting hybrid speciation in the presence of incomplete lineage sorting using gene tree incongruence: A model. Theoretical Population Biology, 75, 35–45.

    PubMed  Google Scholar 

  • Meyer, D., Rinaldi, I. D., Ramlee, H., Perwitasari-Farajallah, D., Hodges, J. K., & Roos, C. (2011). Mitochondrial phylogeny of leaf monkeys (genus Presbytis, Eschscholtz, 1821) with implications for taxonomy and conservation. Molecular Phylogenetics and Evolution, 59, 311–319.

    PubMed  Google Scholar 

  • Montgomery, S. H., Capellini, I., Barton, R. A., & Mundy, N. I. (2010). Reconstructing the ups and downs of primate brain evolution: Implications for adaptive hypotheses and Homo floresiensis. BMC Biology, 8, 9.

    PubMed Central  PubMed  Google Scholar 

  • Moore, W. (1995). Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nuclear-gene trees. Evolution, 49, 718–726.

    Google Scholar 

  • Mulder, M. B. (2001). Using phylogenetically based comparative methods in anthropology: More questions than answers. Evolutionary Anthropology, 10, 99–111.

    Google Scholar 

  • Nabhan, A. R., & Sarkar, I. N. (2012). The impact of taxon sampling on phylogenetic inference: A review of two decades of controversy. Briefings in Bioinformatics, 13, 122–134.

    PubMed  Google Scholar 

  • Nunn, C. L. (2011). The comparative approach in evolutionary anthropology and biology. Chicago: The University of Chicago Press.

  • Nunn, C. L., & Barton, R. A. (2001). Comparative methods for studying primate adaptation and allometry. Evolutionary Anthropology, 10, 81–98.

    Google Scholar 

  • Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

  • O’Leary, M. A., Bloch, J. I., Flynn, J. J., Gaudin, T. J., Giallombardo, A., Giannini, N. P., et al. (2013). The placental mammal ancestor and the post-K-Pg radiation of placentals. Science, 339, 662–667.

    PubMed  Google Scholar 

  • Olson, L. E., Sargis, E. J., Stanley, W. T., Hildebrandt, K. B. P., & Davenport, T. R. B. (2008). Additional molecular evidence strongly supports the distinction between the recently described African primate Rungwecebus kipunji (Cercopithecidae, Papionini) and Lophocebus. Molecular Phylogenetics and Evolution, 48, 789–794.

    CAS  PubMed  Google Scholar 

  • Opie, C., Atkinson, Q. D., & Shultz, S. (2012). The evolutionary history of primate mating systems. Communicative & Integrative Biology, 5, 458–461.

    Google Scholar 

  • Owens, I. P. F. (2006). Where is behavioural ecology going? Trends in Ecology & Evolution, 21, 356–361.

    Google Scholar 

  • Pagel, M. (1994). Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proceedings of the Royal Society of London B: Biological Sciences, 255, 37–45.

    Google Scholar 

  • Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884.

    CAS  PubMed  Google Scholar 

  • Pagel, M., & Meade, A. (2006). Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. The American Naturalist, 167, 808–825.

    PubMed  Google Scholar 

  • Patzelt, A., Zinner, D., Fickenscher, G., Diedhiou, S., Camara, B., et al. (2011). Group composition of Guinea baboons (Papio papio) at a water place suggests fluid social organization. International Journal of Primatology, 32, 652–668.

    PubMed Central  PubMed  Google Scholar 

  • Perelman, P., Johnson, W. E., Roos, C., Seuánez, H. N., Horvath, J. E., Moreira, M. A. M., et al. (2011). A molecular phylogeny of living primates. PLoS Genetics, 7.

  • Perez, S. I., Klaczko, J., & Dos Reis, S. F. (2012). Species tree estimation for a deep phylogenetic divergence in the New World monkeys (Primates: Platyrrhini). Molecular Phylogenetics and Evolution, 65, 621–630.

    PubMed  Google Scholar 

  • Plazzi, F., Ferrucci, R. R., & Passamonti, M. (2010). Phylogenetic representativeness: A new method for evaluating taxon sampling in evolutionary studies. BMC Bioinformatics, 11, 209.

    PubMed Central  PubMed  Google Scholar 

  • Price, J. J., Clapp, M. K., & Omland, K. E. (2011). Where have all the trees gone? The declining use of phylogenies in animal behaviour journals. Animal Behaviour, 81, 667–670.

    Google Scholar 

  • Purvis, A. (1995). A composite estimate of primate phylogeny. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 348, 405–421.

    CAS  PubMed  Google Scholar 

  • Raaum, R. L., Sterner, K. N., Noviello, C. M., Stewart, C.-B., & Disotell, T. R. (2005). Catarrhine primate divergence dates estimated from complete mitochondrial genomes: Concordance with fossil and nuclear DNA evidence. Journal of Human Evolution, 48, 237–257.

    PubMed  Google Scholar 

  • Rasmussen, M. D., & Kellis, M. (2012). Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome Research, 22, 755–765.

    CAS  PubMed  Google Scholar 

  • Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., et al. (2010). Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468, 1053–1060.

    CAS  PubMed  Google Scholar 

  • Rendall, D., & Fiore, A. D. (1995). The road less traveled: Phylogenetic perspectives in primatology. Evolutionary Anthropology, 4, 43–52.

    Google Scholar 

  • Roberts, T. E., Davenport, T. R. B., Hildebrandt, K. B. P., Jones, T., Stanley, W. T., Sargis, E. J., et al. (2010). The biogeography of introgression in the critically endangered African monkey Rungwecebus kipunji. Biology Letters, 6, 233–237.

    PubMed Central  PubMed  Google Scholar 

  • Rokas, A., Williams, B. L., King, N., & Carroll, S. B. (2003). Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature, 425, 798–804.

    CAS  PubMed  Google Scholar 

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

    PubMed  Google Scholar 

  • Roos, C., Schmitz, J., & Zischler, H. (2004). Primate jumping genes elucidate strepsirrhine phylogeny. Proceedings of the National Academy of Sciences of the USA, 101, 10650.

    CAS  PubMed  Google Scholar 

  • Sanderson, M., Purvis, A., & Henze, C. (1998). Phylogenetic supertrees: Assembling the trees of life. Trends in Ecology & Evolution, 13, 8–12.

    Google Scholar 

  • Scally, A., Dutheil, J. Y., Hillier, L. W., Jordan, G. E., Goodhead, I., Herrero, J., et al. (2012). Insights into hominid evolution from the gorilla genome sequence. Nature, 483, 169–175.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sherman, P. (1988). The levels of analysis. Animal Behaviour, 36, 616–619.

    Google Scholar 

  • Song, S., Liu, L., Edwards, S. V., & Wu, S. (2012). Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proceedings of the National Academy of Sciences of the USA, 109, 14942–14947.

    CAS  PubMed  Google Scholar 

  • Springer, M. S., Meredith, R. W., Gatesy, J., Emerling, C. A., Park, J., Rabosky, D. L., et al. (2012). Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PloS One, 7, e49521.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.

    Google Scholar 

  • Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology, 57, 758–771.

    PubMed  Google Scholar 

  • Stamatakis, A., Ludwig, T., & Meier, H. (2005). RAxML-III: A fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics, 21, 456–463.

    Google Scholar 

  • Steiper, M. E., & Seiffert, E. R. (2012). Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proceedings of the National Academy of Sciences of the USA, 109, 6006–6011.

    CAS  PubMed  Google Scholar 

  • Sterner, K. N., Raaum, R. L., Zhang, Y.-P., Stewart, C.-B., & Disotell, T. R. (2006). Mitochondrial data support an odd-nosed colobine clade. Molecular Phylogenetics and Evolution, 40, 1–7.

    CAS  PubMed  Google Scholar 

  • Szalay, F. S., & Delson, E. (1979). Evolutionary history of the primates. New York: Academic Press.

    Google Scholar 

  • Thomson, R. C., & Shaffer, H. B. (2010). Rapid progress on the vertebrate tree of life. BMC Biology, 8, 19.

    PubMed Central  PubMed  Google Scholar 

  • Tinbergen, N. (1959). Comparative studies of the behaviour of gulls (Laridae): A progress report. Behaviour, 15, 1–70.

    Google Scholar 

  • Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410–433.

    Google Scholar 

  • Ting, N., & Sterner, K. N. (2013). Primate molecular phylogenetics in a genomic era. Molecular Phylogenetics and Evolution, 66, 565–568.

    CAS  PubMed  Google Scholar 

  • Townsend, J. P., & Leuenberger, C. (2011). Taxon sampling and the optimal rates of evolution for phylogenetic inference. Systematic Biology, 60, 358–365.

    PubMed  Google Scholar 

  • Townsend, T. M., Mulcahy, D. G., Noonan, B. P., Sites, J. W., Kuczynski, C. A., Wiens, J. J., & Reeder, T. W. (2011). Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Molecular Phylogenetics and Evolution, 61, 363–380.

    PubMed  Google Scholar 

  • Weisrock, D. W., Smith, S. D., Chan, L. M., Biebouw, K., Kappeler, P. M., & Yoder, A. D. (2012). Concatenation and concordance in the reconstruction of mouse lemur phylogeny: An empirical demonstration of the effect of allele sampling in phylogenetics. Molecular Biology and Evolution, 29, 1615–1630.

    CAS  PubMed  Google Scholar 

  • Wimmer, B., Tautz, D., & Kappeler, P. (2002). The genetic population structure of the gray mouse lemur (Microcebus murinus), a basal primate from Madagascar. Behavioral Ecology and Sociobiology, 52, 166–175.

    Google Scholar 

  • Yu, Y., Than, C., Degnan, J. H., & Nakhleh, L. (2011). Coalescent histories on phylogenetic networks and detection of hybridization despite incomplete lineage sorting. Systematic Biology, 60, 138–149.

    CAS  PubMed  Google Scholar 

  • Zinner, D., Arnold, M. L., & Roos, C. (2009a). Is the new primate genus Rungwecebus a baboon? PLoS One, 4, 4859.

    Google Scholar 

  • Zinner, D., Arnold, M. L., & Roos, C. (2011). The strange blood: Natural hybridization in primates. Evolutionary Anthropology, 20, 96–103.

    Google Scholar 

  • Zinner, D., Groeneveld, L. F., Keller, C., & Roos, C. (2009b). Mitochondrial phylogeography of baboons (Papio spp.): Indication for introgressive hybridization? BMC Evolutionary Biology, 9, 83.

    Google Scholar 

  • Zinner, D., Wertheimer, J., Liedigk, R., Groeneveld, L. F., & Roos, C. (2013). Baboon phylogeny as inferred from complete mitochondrial genomes. American Journal of Physical Anthropology, 150, 133–140.

    PubMed Central  PubMed  Google Scholar 

  • Zwickl, D. J., & Hillis, D. M. (2002). Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology, 51, 588–598.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank James Higham, Lauren Brent, and Amanda Melin for inviting us to contribute to this special issue of the International Journal of Primatology. We are grateful to Lauren Brent and two anonymous reviewers for helpful comments and suggestions. We also thank Bret Larget for support and advice in running BUCKy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Pozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozzi, L., Bergey, C.M. & Burrell, A.S. The Use (and Misuse) of Phylogenetic Trees in Comparative Behavioral Analyses. Int J Primatol 35, 32–54 (2014). https://doi.org/10.1007/s10764-013-9701-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-013-9701-0

Keywords

Navigation