Skip to main content
Log in

Numerical Modeling of an Injection-Seeded Terahertz-Wave Parametric Generator

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

A Publisher Correction to this article was published on 22 September 2022

This article has been updated

Abstract

We have constructed a numerical model for injection-seeded terahertz-wave parametric generators in which the pump depletion, the duration of the pump pulse, as well as the spatial modes of the pump and seed beams are taken into consideration. Compared with other models which only provide the parametric gain under the assumption of low pump depletion, our model can make the predictions on the energy as well as spatial and temporal profiles of the generated terahertz-wave. Besides, the appropriate value of nonlinear coefficient of MgO:LiNbO3 in terahertz regime is difficult to find in the published works. To solve this problem, Miller’s rule is applied for the wavelength scaling of the nonlinear coefficient during calculation. We present a detailed description of the model and show that its predictions agree well with the reported experimental results. The presented model allows the performance to be estimated when designing an injection-seeded terahertz-wave parametric generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. K. Kawase, J. Shikata, K. Imai, and H. Ito, Transform-limited, narrowlinewidth, terahertz-wave parametric generator, Appl. Phys. Lett. 78 (2001), 2819–2821.

  2. S. I. Hayashi, H. Sakai, T. Taira, H. Minamide, and K. Kawase, High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:Yag laser, Opt. Express 20 (2012), 2881– 2886.

  3. K. Murate, S. I. Hayashi, and K. Kawase, Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz, Appl. Phys. Express 9 (2016), 082401.

  4. K. Murate, S. I. Hayashi, and K. Kawase, Multiwavelength terahertz-wave parametric generator for one-pulse spectroscopy, Appl. Phys. Express 10 (2017), 032401.

  5. Y. Moriguchi, Y. Tokizane, Y. Takida, K. Nawata, T. Eno, S. Nagano, and H. Minamide, High-average and high-peak output-power terahertz-wave generation by optical parametric down-conversion in MgO:LiNbO3, Appl. Phys. Lett. 113 (2018), 121103.

  6. H. Minamide, S. I. Hayashi, K. Nawata, T. Taira, J. Shikata, and K. Kawase, Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature, J. Infrared Millim. Terahertz Waves 35 (2014), 25–37.

  7. M. Kato, S. R. Tripathi, K. Murate, K. Imayama, and K. Kawase, Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection, Opt. Express 24 (2016), 6425–6432.

  8. S. R. Tripathi, Y. Sugiyama, K. Murate, K. Imayama, and K. Kawase, Terahertz wave three-dimensional computed tomography based on injection-seeded terahertz wave parametric emitter and detector, Opt. Express 24 (2016), 6433–6440.

  9. K. Murate and K. Kawase, Perspective: Terahertz wave parametric generator and its applications, J. Appl. Phys. 124 (2018), 160901.

  10. C. Henry and C. Garrett, Theory of parametric gain near a lattice resonance, Phys. Rev. 171 (1968), 1058–1064.

  11. S. S. Sussman, Tunable light scattering from transverse optical modes in lithium niobate, M. L. Report, Vol. 1851, Stanford University, CA Microwave Laboratory, 1970.

  12. U. Schwarz and M. Maier, Frequency dependence of phonon-polariton damping in lithium niobate, Phys. Rev. B 53 (1996), 5074–5077.

  13. U. Schwarz and M. Maier, Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements, Phys. Rev. B 58 (1998), 766–775.

  14. Y. Takida, J. Shikata, K. Nawata, Y. Tokizane, Z. Han, M. Koyama, T. Notake, S. Hayashi, and H. Minamide, Terahertz-wave parametric gain of stimulated polariton scattering, Phys. Rev. A 93 (2016), 043836.

  15. D. J. Spence, H. M. Pask, and A. J. Lee, Analytic theory for lasers based on stimulated polariton scattering, J. Opt. Soc. Am. B 36 (2019), 1706–1715.

  16. J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, Tunable Terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals, IEEE Trans. Microw. Theory Tech. 48 (2000), 653–661.

  17. X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range, Opt Express 23 (2015), 29729–29737.

  18. M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, Measurement of refractive index and absorption coefficient of congruent and sStoichiometric lithium niobate in the terahertz range, J. Infrared Millim. Terahertz Waves 36 (2015), 1203–1209.

  19. D. E. Zelmon, D. L. Small, and D. Jundt, Infrared corrected sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate, J. Opt. Soc. Am. B 14 (1997), 3319–3322.

  20. K. Kawase, J. Shikata, and H. Ito, Terahertz wave parametric source, J. Phys. D: Appl. Phys. 35 (2001), R1–R14.

  21. Y. Jiang, D. Li, Y. Ding, and I. B. Zotova, Terahertz generation based on parametric conversion: from saturation of conversion efficiency to back conversion, Opt. Lett. 36 (2011), 1608–1610.

  22. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, Ultrabright continuously tunable terahertz-wave generation at room temperature, Sci. Rep. 4 (2014), 5045.

  23. R. C. Miller, Optical second harmonic generation in piezoelectric crystals, Appl. Phys. Lett. 5 (1964), 17–19.

  24. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, Absolute scale of second-order nonlinear-optical coefficients, J. Opt. Soc. Am. B 14 (1997), 2269–2294.

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (11804320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weipeng Kong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Li, Z., Yan, Q. et al. Numerical Modeling of an Injection-Seeded Terahertz-Wave Parametric Generator. J Infrared Milli Terahz Waves 41, 276–290 (2020). https://doi.org/10.1007/s10762-019-00662-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00662-5

Keywords

Navigation