Skip to main content
Log in

Planar Lens–Based Ultra-Wideband Dielectric Rod Waveguide Antenna for Tunable THz and Sub-THz Photomixer Sources

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

A Publisher Correction to this article was published on 22 September 2022

This article has been updated

Abstract

In this manuscript, the use of dielectric rod waveguide antenna (DRW) with an embedded planar lens is proposed as a highly directional alternative to an electrically large hyper-hemispheric silicon lens for emission at millimeter and sub-millimeter wave frequencies. DRW antennas radiate properly if only the fundamental mode is excited to the structure. Since photomixer-based terahertz sources excite many modes, single-lobe radiation patterns are obtained only for lower frequencies of their potential working band. The use of embedded planar lenses is proposed for rectifying the wavefront phase and suppressing such higher-order modes in DRW, allowing an ultra-wideband operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Change history

References

  1. Fixed networks for mobile backhaul. Application note, Nokia 2016.

  2. T. Nagatsuma, Terahertz communications: Past, present and future. 40th International Conference on Infrared, Millimeter and Terahertz waves (IRMMW-THz), 2015.

  3. T. Kürner, S. Priebe,, Towards THz communications-status in research, standardization and regulation. Journal of Infrared, Millimeter, and Terahertz Waves, vol. 35, no. 1, pp. 53–62, 2014.

  4. T. Nagatsuma, and G. Carpintero Recent progress and future prospect of photonics-enabled terahertz communications research. IEICE Transactions on Electronics, vol E98C, no., 12, 2015.

  5. T. Nagatsuma, A. Hirata, N. Shimizu, H.-J. Song, and N. Kukutsu, “Photonic generation of millimeter and terahertz waves and its applications”. 19th International Conference on Applied Electromagnetics and Communications, Dubrovnik, pp. 1–4, 2007.

  6. I. Cámara-Mayorga, P. Muñoz-Pradas, E.A. Michael, M. Mikulics, A. Schmitz, P. van der Wal, C. Kaseman, R. Gusten, K. Jacobs, M. Marso, Terahertz photonic mixers as local oscillators for hot electron bolometer and superconductor-insulator-superconductor astronomical receivers. Journal of Applied Physics, vol. 100, no. 4, pp. 043116, 2006.

  7. G. Carpintero, L.-E. Garcia Munoz, H.L. Hartnagel, S. Preu, and A.V. Räisänen (eds.) Semiconductor Terahertz Technology: Devices and Systems at Room Temperature Operation. Wiley, 2015.

  8. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, H. Takahashi,, Terahertz wireless communications basedon photonics technologies. Optic Express, vol. 21, no. 20, pp. 23736, 2013.

  9. Y.-S. Lee, Principles of Terahertz Science and Technology. Springer Science & Business Media, vol. 170, 2009.

  10. J.-H. Son, Terahertz electromagnetic interactions with biological matter and their applications. Journal of Applied Physics, vol. 105, no. 10, pp. 103033, 2009.

  11. R. Miles, Terahertz Sources and Systems. Springer Science & Business Media, vol. 27, 2001.

  12. E. Brown, K. McIntosh, K. Nichols, C. Dennis, Photomixing up to 3.8 THz in low-temperature-grown GaAs. Applied Physics Letters, vol. 66, no. 3, pp. 285–287, 1995.

  13. L-E. García-Muñoz, K.A. Abdalmalak, G. Santamaría, A. Rivera-Lavado, D. Segovia-Vargas, P. Castillo-Araníbar, F. Van Dijk, T. Nagatsuma, E. Brown, R.-C. Guzman, H. Lamela, G. Carpintero, Photonic-based integrated sources and antenna arrays for broadband wireless links in terahertz communications. IOP Semiconductor Science and Technology, vol. 34, no. 5, 2019.

  14. A. Rivera-Lavado, S. Preu, L.-E. García-Muñoz, A. Generalov, J. Montero-de-Paz, G. Dohler, D. Lioubtchenko, M. Mendez-Aller, F. Sedlmeir, M. Schneidereit, H.G.L. Schwefel, S. Malzer, D. Segovia-Vargas, A.V. Räisänen, Dielectric rod waveguide antenna as THz emitter for photomixing devices. IEEE Transactions on Antennas and Propagation, vol. 63, no. 3, pp. 882–890, 2015.

  15. A. Rivera-Lavado, S. Preu, L.-E. García-Muñoz, A. Generalov, J. Montero-de-Paz, G. Dohler, D. Lioubtchenko, M. Mendez-Aller, S. Malzer, D. Segovia-Vargas, A.V. Räisänen, Antti V., Ultra-wideband Dielectric Rod Waveguide antenna as photomixer-based THz emitter. The 8th European Conference on Antennas and Propagation (EuCAP 2014), pp 3550–3554, 2014.

  16. S. Preu, G. Dohler, S. Malzer, L.J. Wang, A.C. Gossard, Tunable, continuous-wave terahertz photomixer sources and applications. Journal of Applied Physics, vol. 109, no. 6, pp. 061301, 2011.

  17. A. Rivera-Lavado, L.-E. García-Muñoz, A. Generalov, D. Lioubtchenko, K. Atia-Abdalmalak, S. Llorente-Romano, A. García-Lampérez, D. Segovia-Vargas, A.V. Räisänen, Design of a Dielectric Rod Waveguide Antenna Array for Millimeter Waves. Journal of Infrared, Millimeter, and Terahertz Waves, vol. 38, no. 1, pp. 33–46, 2017.

  18. E.A. Marcatili, Dielectric rectangular waveguide and directional coupler for integrated optics. Bell System Technical Journal, vol. 48, no. 7, pp. 2071–2102, 1969.

  19. A. Generalov, D. Lioubtchenko,, A.V. Räisänen, Dielectric rod waveguide antenna at 75-1100 GHz. 7th European Conference on Antennas and Propagation (EuCAP 2013), pp. 541–544, 2013.

  20. A. Thomas, Milligan, Modern Antenna Design John Wiley & Sons, 2005.

Download references

Acknowledgments

DRW antennas were manufactured in Aalto University Micronova Centre for Micro and Nanotechnology, in Espoo, Finland. Photomixers were manufactured in the Fiedrich-Alexander Universität Erlangen-Nürmberg, Germany. Integration, assembly, and measurements were done in Carlos III University of Madrid, Madrid, Spain.

Funding

A. Räisänen’s work at Universidad Carlos III de Madrid (UC3M) was granted by “Cátedras de Excelencia” from Banco Santander agreement. This work has been financially supported in part by the Academy of Finland under the DYNAMITE project and by Proyecto de investigació n “DiDaCTIC: Desarrollo de un sistema de comunicaciones inalámbrico en rango THz integrado de alta tasa de datos”, TEC2013-47753-C3 and, CAM S2013/ICE-3004 “DIFRAGEOS” projects. Dmitri Lioubtchenko’s work at UC3M was granted by a COST Short-Term Scientific Mission grant. Alejandro Rivera-Lavado’s work at Aalto University and Luis-Enrique García Muñoz’s work at Max Planck Institute für Radioastronomie were granted by Newfocus exchange visit grant from ESF research networking programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Rivera-Lavado.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-Lavado, A., García-Muñoz, LE., Lioubtchenko, D. et al. Planar Lens–Based Ultra-Wideband Dielectric Rod Waveguide Antenna for Tunable THz and Sub-THz Photomixer Sources. J Infrared Milli Terahz Waves 40, 838–855 (2019). https://doi.org/10.1007/s10762-019-00612-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00612-1

Keywords

Navigation