Skip to main content
Log in

Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • G. H. Preu, S. Dohler, L. Malzer, J. Wang, and A. C. Gossard, Tunable, continuous-wave THz photomixer sources and applications, J. Appl. Phys. 109 (2011), 061301.

  • D. H. Auston, K. P. Cheung, and P. R. Smith, Picosecond photoconducting Hertzian dipoles, Appl. Phys. Lett. 45 (1984), 284.

  • P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, Generation and detection of terahertz pulses from biased semiconductor antennas, J. Opt. Soc. Am. B 13 (1996), no. 11, 2424–2436.

  • P. H. Siegel, Terahertz technology, IEEE transactions on microwave theory and techniques 50 (2002), 910–928.

  • M. C. Teich, Field-theoretical treatment of photomixing, Appl. Phys. Lett. 14 (1969), no. 6, 201–203.

  • D. Saeedkia and S. Safavi-Naeini, A comprehensive model for photomixing in ultrafast photoconductors, IEEE Photon. Technol. Lett 18 (2006), no. 13, 1457–1459.

  • M. Khabiri, M. Neshat, and S. Safavi-Naeini, Hybrid computational simulation and study of continuous wave terahertz photomixers, IEEE Transactions on Therahertz and Science Technology 2 (2012), no. 6, 605–616.

  • N. Khiabani, Y. Huang, Y. Shen, and S. Boyes, Theoretical modeling of a photoconductive antenna in a terahertz pulsed system, IEEE Trans. Antennas Propag. 61 (2013), no. 4, 1538–1546.

  • E. R. Brown, F. W. Smith, and K. A. McIntosh, Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors, J. Appl. Phys. 73 (1993), 1480–1484.

  • R. F. Pierret, Advanced semiconductor fundamentals, 2nd ed., Prentice Hall, Upper Saddle River, 2003.

  • G. Rodrigrez and A. J. Taylor, Screening of the Bias Field in Terahertz Generation from Photoconductors, Opt. Lett. 14 (1996), 21.

  • C. H. Lee and V. K. Mathur, Picosecond photoconductivity and its applications, IEEE J. Quantum Electon. 17 (1981), no. 10, 2098–2112.

  • G. A. Mourou, C. Stancampiano, A. Antonetti, and A. Orszag, Picosecond microwave pulses generated with a subpicosecond laser driven semiconductor switch, Appl. Phys. Lett. 39 (1981), no. 4, 295–365.

  • J. Madeo, N. Jukam, D. Oustinov, M. Rosticher, R. Rungsawang, J. Tignon, and S. S. Dhillon, Frequency tunable terahertz interdigitated photoconductive antennas, IEEE Electron. Lett. 46 (2010), 611–613.

  • T. Hattori, K. Egawa, M. Sakamoto, S. Ookuma, R. Rungsawang, and T. Itatani, Large-aperture THz emitter with interdigitated electrodes, IEEE Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics 2 (2005), 457–458.

  • H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer, Nat. Photon 6 (2012), 121–126.

  • C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes, Nat. Commun. 4 (2013), 1622.

  • N. Barani, R. Emadi, A. Amirhosseini, and R. Safian, Accurate calculation of excited photocurrent in terahertz photoconductive antennas by using energy balance transport model. Third Conference on Millimeter-Wave and Terahertz Technologies (MMWATT), Tehran, 2014. pp. 1–4.

  • R. Emadi, N. Barani, A. Amirhosseini, and R. Safian, Hybrid analysis of terahertz photoconductive antennas using energy balance transport model. 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, 2015. pp. 1–2.

  • G. S. Smith, Directive properties of antennas for transmission into a material half-space, IEEE Trans. Antennas Propag. 32 (1984), no. 3, 232–246.

  • N. G. Alexopoulos, P. B. Katehi, and D. B. Rutledge, Substrate optimization for integrated circuit antennas, IEEE Transactions on Microwave Theory and Techniques. 31 (1983), no. 7, 550–557.

  • S. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, Resonant dipole antennas for continuous-wave terahertz photomixers, Appl. Phys. Lett. 85 (2004), 1622–4.

  • N. Khiabani, Y. Huang, Y. C. Shen, S. Boyes, and Q. Xu, A novel simulation method for THz photoconductive antenna characterization. 7th European Conference on Antennas and Propagation (EuCAP) (2013). pp. 751–754.

  • S. Kono, M. Tani, and K. Sakai, Ultrabroadband photoconductive detection: comparison with free-space electro-optic sampling, Appl. Phys. Lett. 79 (2001), 898–900.

  • F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas, Appl. Phys. Lett. 21 (2010), 96.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Emadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emadi, R., Barani, N., Safian, R. et al. Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas. J Infrared Milli Terahz Waves 37, 1069–1085 (2016). https://doi.org/10.1007/s10762-016-0299-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0299-0

Keywords

Navigation