Skip to main content
Log in

High Current Responsivity and Wide Modulation Bandwidth Terahertz Detector Using High-Electron-Mobility Transistor for Wireless Communication

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A high-current-responsivity terahertz (THz) detector was fabricated using a broadband bow-tie antenna and an InAlAs/InGaAs high-electron-mobility transistor (HEMT) with a short gate length. High-current responsivity can be achieved by using a short gate length; the resulting high transconductance exhibited ballistic transport in the channel. We fabricated the HEMT detector with a 50-nm-long channel; the transconductance was 1.2 S/mm and the subthreshold slope was 120 mV/dec, yielding a high-current responsivity (∼5 A/W) and a cutoff frequency of 460 GHz. We also measured the modulation bandwidth of the THz detector using a heterodyne mixing technique with a uni-traveling carrier photodiode (UTC-PD) for providing the radio frequency (RF) and a frequency multiplier as a local oscillator. The intensity of the intermediate signal (IF) was measured by changing the frequency of the UTC-PD; very high bandwidths of up to 26 GHz were obtained. The experimental results agree well with electromagnetic simulations, which indicate that the bandwidth is determined by the external circuit. The conversion gain from RF to IF was −2 dB in the heterodyne mixing by using the HEMT detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Tonouchi, Nat. Photonics 1, 97 (2007)

    Article  Google Scholar 

  2. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, H. Takahashi, Opt. Express 21, 20, 23736 (2013)

    Article  Google Scholar 

  3. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, Nat. Photonics 7, 977 (2013)

    Article  Google Scholar 

  4. G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, J. Lampin, IEEE Trans. Terahertz Sci. Tech. 4, 3, 328 (2014)

    Article  Google Scholar 

  5. I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, A. Tessmann, IEEE Trans. Terahertz Sci. Technol. 1, 2, 477 (2011)

    Article  Google Scholar 

  6. K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, S. Arai, Electron. Lett. 48, 10, 582 (2012)

    Article  Google Scholar 

  7. T. Shiode, T. Mukai, M. Kawamura, T. Nagatsuma, Proceedings of the Asia-Pacific Microwave Conference, 1122 (2011)

  8. M. Fujishima, Int. Electron Devices Meeting, 17.6.1, Dec. (2013)

  9. S. Moghadami, F. Hajilou, P. Agrawal, and S. Ardalan, IEEE Trans. Terahertz Sci. Tech. 5, 5, 737 (2015)

    Article  Google Scholar 

  10. T. Watanabe, S. B. Tombet, Y. Tanimoto, Y. Wang, H. Minamide, H. Ito, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. Meziani, T. Otsuji, Solid-State Electron. 78, 109 (2012)

    Article  Google Scholar 

  11. W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lü, R. Gaska, M. S. Shur, G. Simin, X. Hu, M. Asif Khan, C. A. Saylor, L. C. Brunel, J. Appl. Phys. 91, 11, 9346 (2002)

    Article  Google Scholar 

  12. E. Ojefors, A. Lisauskas, D. Glaab, H. G. Roskos, U. R. Pfeiffer, J. Infrared, Millimeter, and Terahertz Waves 30, 1269 (2009)

  13. L. Tohmé, S. Blin, G. Ducournau, P. Nouvel, D. Coquillat, S. Hisatake, T. Nagatsuma, A. Pénarier, L. Varani, W. Knap, J.-F. Lampin, Electron. Lett. 50, 4, 323 (2014)

    Article  Google Scholar 

  14. M. Sakhno, F. Sizov, A. Golenkov, J. Infrared, Millimeter, and Terahertz Waves 34, 798 (2013)

  15. N. Inoue, Y. Yasoka, Infrared Phys. 25, 4, 599 (1985)

    Article  Google Scholar 

  16. M. Lundstrom, J. Guo, Nanoscale Transistors: Device Physics, Modeling, and Simulation (Springer, 2006)

  17. T. Fjeldly, T. Ytterdal, M. S. Shur, Introduction to Device Modeling and Circuit Simulation (Wiley, New York, 1998)

    Google Scholar 

  18. M. S. Shur, Introduction to Electronic Devices (Wiley, New York, 1996)

    Google Scholar 

  19. S. H. Shin, T.-W. Kim, J.-I. Song, J.-H. Jang, Solid-State Electron. 62, 106 (2011)

    Article  Google Scholar 

  20. X. Mei, W. Yoshida, M. Lange, J. Lee, J. Zhou, P. Liu, K. Leong, A. Zamora, J. Padilla, S. Sarkozy, R. Lai, and W. R. Deal, IEEE Electron. Device Lett. 36, 4, 327 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Emeritus Professors Y. Suematsu and K. Furuya of the Tokyo Institute of Technology for their continuous encouragement. We also thank Professors S. Arai and Y. Miyamoto and Associate Professors M. Watanabe and N. Nishiyama of the Tokyo Institute of Technology for fruitful discussions and encouragement. This work was supported by Scientific Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan; the Industry-Academia Collaborative R&D Program from the Japan Science and Technology Agency, Japan; and the Strategic Information and Communications R&D Promotion Programme (SCOPE) from the Ministry of Internal Affairs and Communications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, S., Nukariya, T., Ueda, Y. et al. High Current Responsivity and Wide Modulation Bandwidth Terahertz Detector Using High-Electron-Mobility Transistor for Wireless Communication. J Infrared Milli Terahz Waves 37, 658–667 (2016). https://doi.org/10.1007/s10762-016-0260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0260-2

Keywords

Navigation