Skip to main content
Log in

THz-TDS Characterization of the Digital Communication Channels of the Atmosphere and the Enabled Applications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Our measurements and complete linear dispersion theory calculations of amplitude and phase show that it is possible to have seven high performance point-to-point, 10.7 Gb/s to 28.4 Gb/s, digital THz ground links in the atmosphere. At a RH 58% (10g/m3) and 20 °C including O2 absorption, and for an absorption loss of 10 dB, the seven links are: Channel 1: at 96 GHz, Bandwidth (BW) 30 GHz, 10.7 Gb/s for 17.5 km, Channel 2: at 144 GHz, BW 30 GHz, 12.0 Gb/s for 7.4 km, Channel 3: at 252 GHz, BW 50 GHz, 25.2 Gb/s for 2.5 km, Channel 4: at 342 GHz, BW 24 GHz, 11.4 Gb/s for 840 m, Channel 5: at 408 GHz, BW 30 GHz, 13.6 Gb/s for 440 m, Channel 6: at 672 GHz, BW 60 GHz, 22.6 Gb/s for 140 m, and Channel 7: at 852 GHz, BW 60 GHz, 28.4 Gb/s for 120 m.

The enabled long-path THz links are discussed. Two applications are presented in detail, namely, a long-path 17.5 km THz ground-link operating at 96 GHz, BW 30 GHz, 10.7 Gb/s, and a GEO satellite link at 252 GHz, BW 50 GHz, 25.2 Gb/s. In addition, Channel 7 at 852 GHz is studied by calculated pulse propagation to understand the relationships between high bit-rates and propagation distance. It is shown that good digital transmission could be obtained with 852 GHz, BW 108 GHz, 56.8 Gb/s for a 160 m propagation distance in the atmosphere with RH 58% (10g/m3) and 20 °C. Good digital transmission could also be obtained with 852 GHz, BW 108 GHz, 71.0 Gb/s for 80 m. These results are discussed with respect to high bit-rate, short-path applications.

These digital THz communication channels were determined together with a new measurement of the water vapor continuum absorption from 0.35 to 1 THz. The THz pulses propagate though a 137 m long humidity-controlled chamber and are measured by THz time-domain spectroscopy (THz-TDS). The average relative humidity along the entire THz path is precisely obtained by measuring the difference between transit times of the sample and reference THz pulses to an accuracy of 0.1 ps. Using the measured total absorption and the calculated resonance line absorption with the Molecular Response Theory lineshape, an accurate continuum absorption is obtained within five THz absorption windows, that agrees with the empirical theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Figure 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives,” IEEE Antennas and Propagation Magazine, 49, No. 6, 24–39 (2007).

  2. J. Wells, “Faster than Fiber: The Future of Multi-Gb/s Wireless,” IEEE Microwave Magazine, May 2009, 104–112.

  3. T. Kosugi, A. Hirata, T. Nagatsuma, and Y. Kado, “MM-Wave Long-Range Wireless Systems,” IEEE Microwave Magazine, April 2009, 68–76.

  4. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. Vol. 107, 111101 (2010).

    Article  Google Scholar 

  5. E. Cianca, T. Rossi, A. Yaholom, Y. Pinhasi, J. Farserotu, and C. Sacchi, “EHF for Satellite Communications: The New Broadband Frontier,” Proceedings of the IEEE, 99, 1858–1881 (2011).

    Article  Google Scholar 

  6. T. Kleine-Ostmann and Tadao Nagatsuma, “A Review on Terahertz Communications Research,” J. Infrared Milli Terahz Waves, 32, 143–171 (2011).

    Article  Google Scholar 

  7. Ho-Jin Song and Tadao Nagatsuma, “ Present and Future of Terahertz Communications,“ IEEE Trans. THz Sci. Technol. 1(1), 256–263 (2011).

    Article  Google Scholar 

  8. T. Kurner, and S. Briebe, “Towards THz Communications – Status in Research, Standardization and Regulation,” J. Infrared Milli TeraHz Waves 35, 53–62 (2014).

    Article  Google Scholar 

  9. D.E. Burch and D.A. Gryvnak, “Continuum Absorption by Water Vapor in the infrared and Millimeter Regions,” in Atmospheric Water Vapor, A. Deepak, ed. (Academic Press, New York, NY 1980), pp. 47–76. Proceedings of the International Workshop on Atmospheric Water Vapor (Vail, Colorado, September 11–13, 1979).

  10. Yu. A. Dryagin, A.G. Kislyakov, L.M. Kukin, A.I. Naumov and L.I. Fedosyev, Isvestya VUZ Radiosphsica, “Measurement of the Atmospheric Absorption of Radio Waves in the Range 1.36–3.0 mm,” 9, pp. 627–644, 1966.

  11. R.L. Frenkel and D. Woods, “The Microwave Absorption by H2O and its Mixtures with Other Gases Between 100 and 300 Gc/s,” Proc. IEEE, 54, pp. 498–505, 1966.

    Article  Google Scholar 

  12. A. W. Straiton and C. W. Tolbert, “Anomalies in the Absorption of Radio Waves by Atmospheric Gases,” Proc. IRE, 48, pp. 898–903, 1960.

    Article  Google Scholar 

  13. V. Ya. Ryadov and N.I. Furashov, “Investigation of the spectrum of radiowave absorption by atmospheric water vapor in the 1.15 to 1.5 mm range,” Radio Phys. and Quantum Electronics, 15, pp. 1124–1128, 1974.

  14. D. E. Burch, D.A. Gryvnak, and R.R. Patty, “Absorption of Infrared Radiation by CO2 and H2O: Experimental Techniques,” J. Opt. Soc. Am. 57, pp. 885–895, 1967.

  15. D.E. Burch, “Absorption of Infrared Radiant Energy by CO2 and H2O. III. Absorption by H2O between 0.5 and 36 cm-1,” J. Opt. Soc. Am. 58, pp.1383–1394, 1968.

  16. Y. Yang, A. Shutler and D. Grischkowsky, “Measurement of the Transmission of the Atmosphere from 0.2 to 2 THz,” Opt. Express, 19(9), 8830–8838 (2011).

    Article  Google Scholar 

  17. S. Paine, R. Blundell, D. Papa, J. Barrett, and S. Radford, “A Fourier transform spectrometer for measurement of atmospheric transmission at submillimeter wavelengths,” Publ astronom Soc Pacific, 112(2), 108–126 (2000).

    Article  Google Scholar 

  18. J. Melinger, Y. Yang, M. Mandehgar, and D. Grischkowsky, “THz detection of small molecule vapors in the atmospheric transmission windows,” Opt. Express, 20(6), 6788–6807 (2012).

    Article  Google Scholar 

  19. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech., 50, pp. 910–928, Mar. 2002.

  20. R. Appleby and H. B. Wallace, “Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region,” IEEE Transactions on Antennas and Propagation, 55, pp. 2944–2956, Nov 2007.

  21. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz pulse transmission in the atmosphere,” IEEE Trans. THz Sci. Technol. 2(4), 406–415 (2012).

    Article  Google Scholar 

  22. H. J. Liebe, “The atmospheric water vapor continuum below 300 GHz,” Int. J. Infrared Millim. Waves. 5(2), 207–227 (1984).

  23. L.S. Rothman, I.E. Gordon, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S. T. Massie, S.N. Milhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Simeckova, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” JQSRT, 110(9–10), 533–572 (2009).

    Article  Google Scholar 

  24. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Sub-millimeter, millimeter, and microwave spectral line catalog,” JQSRT 60(5), 883–890 (1998); Access to specific catalog entries may be found at http://spec.jpl.nasa.gov/.

    Article  Google Scholar 

  25. Y. Yang, M. Mandehgar and D. Grischkowsky, “Broad-Band THz Pulse Transmission through the Atmosphere,” IEEE Trans. THz Sci. Technol. 1(1), 264–273 (2011).

    Article  MATH  Google Scholar 

  26. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Time Domain Measurement of the THz Refractivity of Water Vapor,” Opt. Express 20(24), 26208–26218 (2012).

    Article  Google Scholar 

  27. H. Harde, N. Katzenellenbogen, and D. Grischkowsky, “Line-Shape Transition of Collision Broadened Lines,” Phys. Rev. Lett. 74{8), 1307–1310 (1995).

    Article  Google Scholar 

  28. H. Harde, R. A. Cheville and D. Grischkowsky, “Terahertz Studies of Collision Broadened Rotational Lines,” J. Phys. Chem. A 101(20), 3646–3660 (1997).

    Article  Google Scholar 

  29. Y. Yang, M. Mandehgar and D. Grischkowsky, “Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory,” Optics Express, 22, pp. 4388–4403 (2014).

    Article  Google Scholar 

  30. R. J. Hill, “Water vapor-absorption lineshape comparison using the 22-GHz line: the Van Vleck-Weisskopf shape affirmed,” Radio Science 21(3), 447–451 (1986).

    Article  Google Scholar 

  31. M. A. Koshelev, E. A. Serov, V. V. Parshin, M. Yu. Tretyakov, “Millimeter wave continuum absorption in moist nitrogen at temperature 261–328K,” JQSRT 112(17), 2704–2712 (2011).

    Article  Google Scholar 

  32. M. Y. Tretyakov, A. F. Krupnov, M. A. Koshelev, D. S. Makarov, E. A. Serov, and V. V. Parshin, “Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range,” Rev. Sci. Inst. 80(9), 093106 (2009).

    Article  Google Scholar 

  33. T. Kuhn, A. Bauer, M. Godon, S. Buhler, and K. Kunzi, “Water vapor continuum: absorption measurements at 350GHz and model calculations,” JQSRT 74(5), 545–562 (2002).

    Article  Google Scholar 

  34. V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” JQSRT 109(3), 458–467 (2008).

    Article  Google Scholar 

  35. D. M. Slocum, E. J. Slingerland, R. H. Giles, T. M. Goyette, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” JQSRT 127, 49–63 (2013)

    Article  Google Scholar 

  36. J. H. Van Vleck and V. F. Weisskopf, “On the shape of collision-broadened lines,” Rev. Mod. Phys. 17(2–3), 227–236 (1945).

    Article  Google Scholar 

  37. D. Grischkowsky, Yihong Yang, and Mahboubeh Mandehgar, “Zero-Frequency Refractivity of Water Vapor, Comparison of Debye and van-Vleck Weisskopf Theory, “ Optics Express, 21, pp. 18899–18908 (2013).

    Article  Google Scholar 

  38. P. W. Rosenkranz, “Water vapor microwave continuum absorption: a comparison of measurements and models,” Radio Science , 33(4), 919–928 (1998).

    Article  Google Scholar 

  39. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA-B, 7(10), 2006–2015 (1990).

    Article  Google Scholar 

  40. M. Mandehgar, Y. Yang and D. Grischkowsky, “Atmosphere characterization for simulation of the two optimal wireless THz digital communication links,” Opt. Lett. 38 (17), 3437–3440 (2013).

    Article  Google Scholar 

  41. J. H. Van Vleck, “The absorption of microwaves by oxygen,” Phys. Rev. 71(7), 413–424 (1947).

    Article  Google Scholar 

  42. M. W. P. Strandberg, C. Y. Meng, and J. G. Ingersoll, “The Microwave Absorption Spectrum of Oxygen,” Phys. Rev. 75, 1524–1528 (1949).

    Article  Google Scholar 

  43. G.P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley 2002).

  44. R.W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of Ultra-Wideband, Short Pulses of THz Radiation through Sub-mm Diameter Circular Waveguides,” Opt. Lett, 24, 1431–1433 (1999).

    Article  Google Scholar 

  45. R. Mendis and D. Grischkowsky, "Undistorted guided wave propagation of subpsec THz pulses," Optics Letters, 26, 846–848 (2001).

    Article  Google Scholar 

  46. H. T. Friis, Proc. IRE 34, 254 (1946).

    Article  Google Scholar 

  47. S. Ramo, J. R. Whinnery, and T. Van Duzer, “Fields and Waves in Communication Electronics,” Third Edition (John Wiley & Sons, Inc. New York, 1993). Page 666, Eq. (7).

  48. J. Lesurf, “Millimetre-wave Optics, Devices & Systems,” (Adam Hilger, Bristol, UK, 1990), Eq. (4.10).

  49. A.E. Siegman, “Lasers,” (University Science Books, Mill Valley, CA, 1986), Chapter 17.

  50. ITU-R-Model-2005, “Specific Attenuation Model for Rain for Use in Prediction Methods,”

  51. R. Appleby, “Passive millimeter-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. Lond. A, 362, 379–394 (2004).

    Article  Google Scholar 

  52. R.S. Lawrence and J. W. Strohbehn, “A Survey of Clear-Air Propagation Effects Relevant to Optical Communications,” Proc. IEEE, 58, 1523–1545, (1970).

    Article  Google Scholar 

  53. R.W. McMillan. R.A. Bohlander, G.R. Ochs. R.J. Hill, S.F. Clifford, “Millimeter Wave Atmospheric Turbulence Measurements: Preliminary Results and Instrumentation for Future Measurements’” Optical Engineering, 22, No. 1, 32–39 (1983).

  54. R.J. Hill, R.A. Bohlander, S.F. Clifford, R.W. McMillan. J.T. Priestley, S.P. Schoenfeld, “Turbulence Induced Millimeter Wave Scintillation Compared with Micormeteorological Measurements,” IEEE. Trans. Geosciences and Remote Sensing, 26, No. 3, 330–342 (1988).

    Article  Google Scholar 

  55. R.W. McMillan, “Intensity and Angle-of-Arrival Effects on Microwave Propagation Caused by Atmospheric Turbulence,” IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, 2008, COMCAS 2008.

  56. M. Ruggieri, S. De Fina, M. Pratesi, A. Salome, E. Sagese, and C. Bonnifasi, “The W-Band Data Collection Experiment of the DAVID Mission,” IEEE Trans. Aerosp. Electron. Syst., 38, 1377–1387 (2002).

    Article  Google Scholar 

  57. M. Lucente, E. Re, T. Rossi, E. Cianca, C Stallo, M. Ruggieri, A. Jebril, D. Dionisio, and I. Zuliani, “IKNOW mission; Payload design for in orbit test of W band technology,” in Proc. IEEE Aerosp. Conf. , Big Sky. MT Mar. 1–8 (2008).

  58. B. Younes, “White paper on integrated interplanetary network (IIN),” NASA Publications and Reports, Nov. 2000.

  59. L. Moeller, J. Federici, K. Su, “THz Wireless Communications: 2.5 Gb/s Error-Free Transmission at 625 GHz Using a Narrow-Bandwidth 1 mW THz Source”, 30th URSI General Assembly and Scientific Symposium (URSI GASS), 4 (electronic), Istanbul, (2011).

  60. I. Kallfass, J. Antes, D. Lopez-Diaz, S. Wagner, A. Tessmann, A. Leuther, Broadband active integrated circuits for terahertz communication, in: Proc. of 18th European Wireless Conference European Wireless, EW, pp. 1–5 (2012)/

  61. H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, N. Kukutsu, 24 Gbit/s data transmission in 300 GHz band for future terahertz communications, IET Electron. Lett. 48 (15) 953–954 (2012).

    Article  Google Scholar 

  62. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nature Photonics, 7, 977–981 (2013).

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Grischkowsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Mandehgar, M. & Grischkowsky, D. THz-TDS Characterization of the Digital Communication Channels of the Atmosphere and the Enabled Applications. J Infrared Milli Terahz Waves 36, 97–129 (2015). https://doi.org/10.1007/s10762-014-0099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0099-3

Keywords

Navigation