Skip to main content
Log in

InGaAs/GaAsSb/InP terahertz quantum cascade lasers

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The development of In0.53Ga0.47As/GaAs0.51Sb0.49 terahertz quantum cascade lasers is reviewed, starting with the first demonstration, through growth direction dependent performance issues, to high performance devices. This InP-based material system is an attractive alternative to the almost exclusively used GaAs/AlxGa1-xAs. Devices achieve maximum operating temperatures of 142 K and exhibit broadband lasing over a range of 660 GHz. A special focus has to be put on the growth direction related interface asymmetry for this material system. Symmetric active region designs are an elegant technique to investigate such asymmetries. A significant impact on the device performance is observed and attributed to interface roughness scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. S. Williams, Nat. Photonics 1, 517 (2007).

    Article  Google Scholar 

  2. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417, 156 (2002).

    Article  Google Scholar 

  3. B. S. Williams, S. Kumar, Q. Hu and J. Reno, Opt. Express 13, 3331 (2005).

    Article  Google Scholar 

  4. S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 94, 131105 (2009).

    Article  Google Scholar 

  5. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, Opt. Express 20, 3866 (2012).

    Article  Google Scholar 

  6. A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, Nat. Photonics 3, 41 (2009).

    Article  Google Scholar 

  7. E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winnerl, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, Nat. Materials 8, 803 (2009).

    Article  Google Scholar 

  8. V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck, F. Gramm, and J. Faist, Appl. Phys. Lett. 101, 261113 (2012).

    Article  Google Scholar 

  9. M. I. Amanti, A. Bismuto, M. Beck, L. Isa, K. Kumar, E. Reimhult, and J. Faist, Opt. Express 21, 10917 (2013).

    Article  Google Scholar 

  10. M. Krall, M. Brandstetter, C. Deutsch, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser and K. Unterrainer, Proc. SPIE 8640, 864018 (2013).

    Article  Google Scholar 

  11. T. Grange, arXiv:1301.1258 [cond-mat.mes-hall].

  12. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 98, 181102 (2011).

    Article  Google Scholar 

  13. P. Liu, A. J. Hoffman, M. D. Escarra, J. K. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, Nat. Photonics 4, 95 (2010).

    Article  Google Scholar 

  14. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, Appl. Phys. Lett. 73, 3486 (1998).

    Article  Google Scholar 

  15. E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, Appl. Phys. Lett. 93, 131108 (2008).

    Article  Google Scholar 

  16. M. Fischer, G. Scalari, Ch. Walther, and J. Faist, Journal of Crystal Growth 311, 1939 (2009).

  17. L. Ajili, G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, Appl. Phys. Lett. 87, 141107 (2005).

    Article  Google Scholar 

  18. M. Fischer, G. Scalari, K. Celebi, M. Amanti, Ch. Walther, M. Beck, and J. Faist, Appl. Phys. Lett. 97, 221114 (2010).

    Article  Google Scholar 

  19. K. Fujita, M. Yamanishi, S. Furuta, K. Tanaka, T. Edamura, T. Kubis, and G. Klimeck, Opt. Express 20, 20647 (2012).

    Article  Google Scholar 

  20. H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 84, 645 (2003).

    Article  Google Scholar 

  21. T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, Phys. Rev. B 79, 195323 (2009)

    Article  Google Scholar 

  22. R. Nelander and A. Wacker, Appl. Phys. Lett. 92, 081102 (2008).

    Article  Google Scholar 

  23. C. Jirauschek and Paolo Lugli, J. Appl. Phys. 105, 123102 (2009).

    Google Scholar 

  24. E. Bellotti, K. Driscoll, T. D. Moustakas, and Roberto Paiella, Appl. Phys. Lett. 92, 101112 (2008).

    Google Scholar 

  25. L. Lever, A. Valavanis, Z. Ikonić, and R. W. Kelsall, Appl. Phys. Lett. 92, 021121 (2008).

    Article  Google Scholar 

  26. M. Nobile, H. Detz, E. Mujagić, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, Appl. Phys. Lett. 95, 041102 (2009).

    Article  Google Scholar 

  27. M. Nobile, P. Klang, E. Mujagić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, Electronics Letters 45, 1031 (2009) .

    Article  Google Scholar 

  28. H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, J. Vac. Sci. Technol. B. 28 (3), 1071 (2010).

    Article  Google Scholar 

  29. H. Detz, M. Nobile, C. Deutsch, P. Klang, A. M. Andrews, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, Journal of Modern Optics 58, 2015 (2011).

    Article  Google Scholar 

  30. C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, Appl. Phys. Lett. 97, 261110 (2010).

    Article  Google Scholar 

  31. C. Deutsch, M. Krall, M. Brandstetter, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, G. Strasser, and K. Unterrainer, Appl. Phys. Lett. 101, 211117 (2012).

    Article  Google Scholar 

  32. H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, J. C. Cao, and H. C. Liu, Appl. Phys. Lett. 90, 041112 (2007).

    Article  Google Scholar 

  33. H. Luo, R. Sylvain, Z. R. Wasilewski, and H. C. Liu, Electronics Letters 43, 633 (2007).

    Article  Google Scholar 

  34. H. Luo, R. Sylvain, Z. R. Wasilewski, H. C. Liu, J. C. Cao, Electronics Letters 44, 630 (2008).

    Article  Google Scholar 

  35. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  Google Scholar 

  36. H. Detz, P. Klang, A. M. Andrews, W. Schrenk, and G. Strasser, Journal of Crystal Growth 323, 42 (2011).

    Article  Google Scholar 

  37. C. Deutsch, H. Detz, T. Zederbauer, A. M. Andrews, P. Klang, T. Kubis, G. Klimeck, M. E. Schuster, W. Schrenk, G. Strasser, and K. Unterrainer, Opt. Express 21, 7209 (2013).

    Article  Google Scholar 

  38. R. M. Feenstra, D. A. Collins, D. Z. –Y. Ting, M. W. Wang, and T. C. McGill, Phys. Rev. Lett. 72, 2749 (1994).

    Article  Google Scholar 

  39. T. Kubis, S. R. Mehrotra, G. Klimeck, “Design concepts for terahertz quantum cascade lasers:Proposal for terahertz laser efficiency improvements,” Appl. Phys. Lett. 97, 261106 (2010).

    Article  Google Scholar 

  40. S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, J. Appl. Phys. 113, 113109 (2013).

    Article  Google Scholar 

  41. M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser and K. Unterrainer, Appl. Phys. Lett. 102, 231121 (2013).

    Google Scholar 

  42. Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, IEEE Trans. THz Scien. Techn. 2, 83 (2012).

    Article  Google Scholar 

  43. D. Turcinkova, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, and J. Faist, Appl. Phys. Lett. 99, 191104 (2011).

    Google Scholar 

  44. S. Barbieri, M. Ravaro, P. Gellie, G. Sanatarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and G. Davies, Nature Photonics 5, 377 (2011).

    Article  Google Scholar 

  45. L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, Nature Communications 3, 1040 (2012).

    Article  Google Scholar 

  46. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, Opt. Express 16, 3242 (2008).

    Article  Google Scholar 

  47. M. D. Escarra, A. Benz, A. M. Bhatt, A. J. Hoffman, X. Wang, J.-Y. Fan, and C. Gmachl, IEEE Photon. J. 2, 500–509 (2010).

    Article  Google Scholar 

  48. C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Bidirectional semiconductor laser,” Science 286, 749 (1999).

    Article  Google Scholar 

  49. E. Dupont, S. Fathololoumi, and H. C. Liu, Phys. Rev. B 81, 205311 (2010).

    Article  Google Scholar 

  50. C. Deutsch, H. Detz, M. Krall, M. Brandstetter, T. Zederbauer, A. M. Andrews, W. Schrenk, W. Schrenk, G. Strasser, and K. Unterrainer, Appl. Phys. Lett. 102, 201102 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Deutsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deutsch, C., Detz, H., Zederbauer, T. et al. InGaAs/GaAsSb/InP terahertz quantum cascade lasers. J Infrared Milli Terahz Waves 34, 374–385 (2013). https://doi.org/10.1007/s10762-013-9991-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-9991-5

Keywords

Navigation