Skip to main content
Log in

Optically- and Electrically-Stimulated Terahertz Radiation Emission from Indium Nitride

  • Invited Review Article
  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Indium nitride is a novel narrow band gap semiconductor. The material is a potential strong source of terahertz frequency electromagnetic radiation with applications in time-domain terahertz spectroscopy and imaging systems. This article reviews recent experimental research on terahertz emission from the binary compound semiconductor indium nitride excited by near-infrared laser beams or microseconds electrical pulses. Advantages of indium nitride as terahertz radiation source material are discussed. It is demonstrated that different mechanisms contribute to the emission of terahertz radiation from indium nitride. The emission of up to 2.4 μW of THz radiation power is observed when InN is excited with near-infrared femtosecond laser pulses at an average power of 1 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Phys. Status Solidi. B. 229, R1 (2002).

  2. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).

    Article  Google Scholar 

  3. R. Ascazubi, I. Wilke, K. Denniston, H. Lu, W. J. Schaff, Appl. Phys. Lett. 84, 4810 (2004).

    Article  Google Scholar 

  4. G. Chern, E. Readinger, H. Shen, M. Wraback, C. Gallinat, G. Koblmueller, J. Speck, Appl. Phys. Lett. 89, 141115 (2006).

    Article  Google Scholar 

  5. B. Pradarutti, G. Matthaeus, C. Brueckner, S. Riehemann, G. Notni, S. Nolte, V. Cimalla, V. Lebedev, O. Ambacher, A. Tuennermann, Proc. SPIE Vol. 6194, 619401 (2006).

    Google Scholar 

  6. P. H. Siegel, IEEE T. Microw. Theory, 50, 910 (2002).

    Article  Google Scholar 

  7. M. Tonouchi, Nat. Photonics 1, 97 (2007).

    Article  Google Scholar 

  8. I.Wilke, in Encyclopedia of Analytical Chemistry, ed. by R. A. Meyers, (John Wiley & Sons, Ltd., Hoboken, NJ, 2008), vol. S1-S3, p.1318.

  9. R. A. Cheville, D. Grischkowsky, J. Opt. Soc. Am. B, 16, 317 (1999).

    Article  Google Scholar 

  10. M. C. Beard, G. M. Turner, C. A. Schmuttenmaer, J. Phys. Chem. 106, 7146 (2002).

    Article  Google Scholar 

  11. D. M. Mittleman, R. H. Jacobsen, M. C. Nuss IEEE J. Selec Topics Quant Electron 2, 679 (1996)

    Article  Google Scholar 

  12. D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, M.Koch, Appl. Phys. B 68, 1085 (1999).

    Article  Google Scholar 

  13. J. F Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, Semicond Sci Technol 20, S266 (2005).

    Article  Google Scholar 

  14. A. J. Fitzgerald, B. E. Cole, P. F. Taday, J. Pharm. Sci. 94, 177 (2005).

    Article  Google Scholar 

  15. T. Kleine-Ostmann, T. Nagatsuma, J Infrared Milli Terah Waves, 32, 143 (2011)

    Article  Google Scholar 

  16. G. Klatt, R. Gebs, C. Janke, T. Dekorsy, A. Bartels, Optics Express 17, 22847 (2009).

    Article  Google Scholar 

  17. Y. Kim, D.-S.Yee, Optics Letters 35, 3715 (2010).

    Article  Google Scholar 

  18. R. A. Cheville, in Terahertz Spectroscopy – Principles and Applications, ed. S. L. Dexheimer, (Taylor & Francis, LLC, Boca Raton, 2008), p. 1.

    Google Scholar 

  19. I. Wilke, S. Sengupta, in Terahertz Spectroscopy – Principles and Applications, ed. S. L. Dexheimer, (Taylor & Francis, LLC, Boca Raton, 2008) p. 41.

    Google Scholar 

  20. B. Ferguson, X.-C. Zhang, Nat Materials 1, 26 (2002).

    Article  Google Scholar 

  21. A. G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys. 94, 2779 (2003).

    Article  Google Scholar 

  22. P. Rinde, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, Phys. Rev. B. 77, 075202 (2008).

    Article  Google Scholar 

  23. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W.J. Schaff, W. K. Metzger, S. Kurtz, J. Appl. Phys. 94, 6477 (2003).

    Article  Google Scholar 

  24. I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, W. J. Schaff, Phys. Rev. Lett. 92, 036804 (2004).

    Article  Google Scholar 

  25. R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Phys. Rev. Lett. 96, 125505, (2006).

    Article  Google Scholar 

  26. P. A. Anderson, C. H. Swartz, D. Carder, R. J. Reeves, S. M. Durbin, S. Chandril, T. H. Myers, Appl. Phys. Lett. 89, 184104 (2006).

    Article  Google Scholar 

  27. V. Cimalla, M. Niebelschütz, G. Ecke, O. Ambacher, R. Goldhahn, H. Lu, W. J. Schaff, Phys. Status Solidi C 3, 1721 (2006).

    Article  Google Scholar 

  28. P. D. C. King, T. D. Veal, P. H. Jefferson, C. F. McConville, H. Lu, W. J. Schaff, Phys. Rev. B 75, 115312 (2007).

    Article  Google Scholar 

  29. I. Wilke, R. Ascazubi, H. Lu, W. J. Schaff, Appl. Phys. Lett. 93, 221113 (2008).

    Article  Google Scholar 

  30. J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, R. Jakiela, Appl. Phys. Lett. 84, 2805 (2004).

    Article  Google Scholar 

  31. R. Ascazubi, I. Wilke, S. Cho, H. Lu, W. J. Schaff, Appl. Phys. Lett. 93, 221113 (2008).

    Article  Google Scholar 

  32. V. Cimalla, B. Pradarutti, G. Matthaeus, C. Brueckner, S. Riehemann, G. Notni, S. Nolte, A. Tuennermann, V. Lebedev, O. Ambacher, Phys. Stat. Sol. B 244, 1829 (2007).

    Article  Google Scholar 

  33. C.-K. Sun, J.-C. Liang, X.-Y. Yu, Phys. Rev. Lett. 84, 179–182 (2000).

    Article  Google Scholar 

  34. P. van Capel, D. Turchinovich, H. Porte, S. Lahmann, U. Rossow, A. Hangleiter, J. I. Dijkhuis, Phys. Rev. B 84, 085317 (2011).

    Article  Google Scholar 

  35. K.-H. Lin, G.-W. Chern, Y.-K. Huang, C.-K. Sun, Phys. Rev. B 70, 073307 (2004).

    Article  Google Scholar 

  36. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, W. H. Knox, Phys. Rev. B 61, 16642 (2000)

    Article  Google Scholar 

  37. S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, A. F. J. Levi, Phys. Rev. Lett. 68, 102–105 (1992).

    Article  Google Scholar 

  38. P. C. M. Planken, M. C. Nuss, W. H. Knox, D. A. Miller, K. W. Goossen, Appl. Phys. Lett. 61, 2009–2011 (1992).

    Article  Google Scholar 

  39. R. Ascazubi, I. Wilke, K. J. Kim, Partha Dutta, Phys. Rev. B 74, 075323 (2006).

    Article  Google Scholar 

  40. R. Ascazubi, C. Shneider, Ingrid Wilke, R. Pino, P. Dutta, Phys. Rev. B, 72, 045328 (2005).

    Article  Google Scholar 

  41. Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, I. Wilke, Phys. Rev. B 78, 035201 (2008).

    Article  Google Scholar 

  42. T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, H. Kurz, Phys. Rev. B 53, 4005 (1996)

    Article  Google Scholar 

  43. H. Ahn, Y.-P. Ku, Y.-C. Wang, C.-H. Chuang, S. Gwo, C.-L. Pan, Appl. Phys. Lett. 91, 132108 (2007).

    Article  Google Scholar 

  44. V. M. Polyakov, F. Schwierz, Semicond Sci Technol 22, 1016 (2007).

    Article  Google Scholar 

  45. H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W. Lin, Y.-L. Hong, S. Gwo, Appl. Phys. Lett. 92, 102103 (2008).

    Article  Google Scholar 

  46. H. Ahn, Y. Yi-Jou, H. Yu-Liang, S. Gwo, Appl. Phys. Express 3, 122105 (2010).

    Article  Google Scholar 

  47. X. Q. Wang, G. Z. Zhao, Q. Zhang, Y. Ishitani, A. Yoshikawa, B. Shen, Appl. Phys. Lett. 96, 061907 (2010)

    Article  Google Scholar 

  48. W. Zhang, A. K. Azad, D. Grischkowsky, Appl.Phys. Lett. 82, 2841–2843 (2003).

    Article  Google Scholar 

  49. M. Levinshtein, S. Rumyantsev, M. Shur, in Handbook Series on Semiconductor Parameters (World Scientific, Singapore, 1996).

  50. Ref [49] and updates for InN as listed on Semiconductors NSM Archive (http://www.ioffe.rssi.ru/SVA/NSM/Semicond/). The intrinsic carrier concentration of InN is calculated using a bang gap value of Eg = 0.70 eV.

  51. X. Mu, Y. J. Ding, K. Wang, D. Jena, Y. B. Zotova, Opt. Lett. 32, 1423–1425 (2007).

    Article  Google Scholar 

  52. K. A. Wang, Y. Cao, J. Simon, J. Zhang, A. Mintairov, J. Merz, D. Hall, T. Kosel, D. Jena, Appl. Phys. Lett. 89, 162110 (2006).

    Article  Google Scholar 

  53. P. G. Huggard, C. J. Shaw, J. A. Cluff, S. R. Andrews, Appl. Phys. Lett. 72, 2069 (1998).

    Article  Google Scholar 

  54. V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, J. Graul, Phys. Stat. Sol. B 229, R1 (2002).

    Article  Google Scholar 

  55. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, W. J. Schaff, J. Appl. Phys. 74, 4457 (2003).

    Article  Google Scholar 

  56. A. Yariv, Quantum Electronics, 3rd ed., Wiley, NY, 1989.

    Google Scholar 

  57. B. F. Levine, Phys. Rev. 7, 2600 (1973).

    Article  Google Scholar 

  58. F. N. H. Robinson, Phys. Lett. A 26, 435 (1968).

    Article  Google Scholar 

  59. X.-C. Zhang, B. B. Hu, J. T. Darrow, D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).

    Article  Google Scholar 

  60. A. Zubrilov, in Properties of advanced semiconductor materials GaN, AlN, InN, BN, SiC, SiGe. Eds. M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur, Wiley, NY, 2001, pp.49–66.

    Google Scholar 

  61. Y. J. Ding, IEEE J. Sel. Top. Quantum Electron. 10, 1171 (2004).

    Article  Google Scholar 

  62. V. I. Gavrilenko, R. Q. Wu, Phys. Rev. B 61, 2632 (2000).

    Article  Google Scholar 

  63. X.-C. Zhang, Y. Jin, K. Yang, L. J. Schowalter, Phys. Rev. Lett. 69, 2303 (1992).

    Article  Google Scholar 

  64. G. Xu, Y. J. Ding, H. Zhao, G. Liu, M. Jamil, N. Tansu, I. B. Zotova , C. E. Stutz, D. E. Diggs, N. Fernelius, F. K. Hopkins, Semicond. Sci. Technol. 25, 015004 (2010).

    Article  Google Scholar 

  65. M. Jamil, H. Zhao, J. Higgins, N. Tansu, Phys. Status Solidi A 205, 2886 (2008).

    Article  Google Scholar 

  66. M. Jamil, H. Zhao, J. Higgins, N. Tansu, J. Crys. Growth 310, 4947 (2008).

    Article  Google Scholar 

  67. M. Jamil, R. A. Arif, Y. K. Ee, H. Tong, J. B. Higgins, N. Tansu, Phys. Status Solidi A 205, 1619 (2008).

    Article  Google Scholar 

  68. L. F. Jiang, W. Z. Shen, H. F. Yang, H. Ogawa, Q. X. Guo, Appl. Phys. A 78, 89 (2004).

    Article  Google Scholar 

  69. W. Liang, K.T. Tsen, D.K. Ferry, H. Lu, W.J. Schaff, Appl. Phys. Lett. 84, 3681 (2004).

    Article  Google Scholar 

  70. G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, M. Jamil, I. T. Ferguson. J. Appl. Phys. 109, 093111 (2011).

    Google Scholar 

  71. M. Jamil, T. Xu, T. Zaidi, A. Melton, B. Jampana, C.-L. Tan, B. S. Ooi, I. T. Ferguson, Phys. Status Solidi A 207, 1895 (2010).

    Article  Google Scholar 

  72. H. Ahn, Y.-J. Yeh, Y.-L. Hong, S. Gwo, Appl. Phys. Lett. 95, 232104 (2009).

    Article  Google Scholar 

  73. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3 rd ed. (Springer, Berlin, 1999).

    Google Scholar 

  74. M. Nakajima, M. Hangyo, M. Ohta, H. Miyazaki, Phys. Rev. B 67, 195308 (2003).

    Article  Google Scholar 

  75. G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, Appl. Phys. Lett. 98 , 021114 (2011).

    Article  Google Scholar 

  76. G. Sharma, L. Razzari, F. H. Su, F. Blanchard, A. Ayesheshim, T. L. Cocker, L. V. Titova, H. C. Bandulet, T. Ozaki, J.-C. Kieffer, R. Morandotti, M. Reid, F. A. Hegmann, IEEE Photon. J. 2, 578 (2010).

    Article  Google Scholar 

  77. M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, IEEE J. of Selected Topics in Quantum Electronics 15, 952 (2009).

    Google Scholar 

  78. O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, A. Tredicucci, J. Xu, F. Beltram, H. E. Beere, D. A. Ritchie, V. Tamošinuas, Optics Express 14, 5335 (2006).

    Article  Google Scholar 

  79. M.I. Dyakonov, M.S. Shur. Phys. Rev. Lett. 71, 2465 (1993).

    Article  Google Scholar 

  80. Y. M. Meziani, H. Handa, W. Knap, T. Otsuji, E. Sano, V. V. Popov, G. M. Tsymbalov, D. Coquillat, F. Teppe, Appl. Phys. Lett. 92, 201108 (2008).

    Article  Google Scholar 

  81. R. A. Höpfel, E. Vass, E. Gornik, Phys. Rev. Lett. 49, 1667 (1982).

    Article  Google Scholar 

  82. W. E. Anderson Jr., R. W. Alexander, R. J. Bell, Phys. Rev. Lett. 27, 1057 (1971).

    Article  Google Scholar 

  83. S. J. Allen, D. C. Tsui, R. A. Logan, Phys. Rev. Lett. 38, 980 (1977).

    Article  Google Scholar 

  84. J. G. Rivas, M. Kuttge, H. P.Bolivar, H. Kurz, J. A. Sánchez-Gil, Phys. Rev. Lett. 93, 256804 (2004).

    Article  Google Scholar 

  85. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Milet, S. Mainguy, Y. Chen, Nature 416, 61 (2002).

    Article  Google Scholar 

  86. T. V. Shubina, A. V. Andrianov, A. O. Zakhar’in, V. N. Jmerik, I. P. Soshnikov, T. A. Komissarova, A. A. Usikova, P. S. Kop’ev, S. V. Ivanov, V. A. Shalygin, A. N. Sofronov, D. A. Firsov, L. E. Vorob’ev, N. A. Gippius, J. Leymarie, X. Wang, A. Yoshikawa, Appl. Phys. Lett. 96, 183106 (2010).

    Article  Google Scholar 

  87. T. V. Shubina, N. A. Gippius, V. A. Shalygin, A. V. Andrianov, S. V. Ivanov, Phys. Rev. B 83, 165312 (2011).

    Article  Google Scholar 

  88. R. H. Ritchie, Phys. Rev. 106, 874 (1957).

    Article  MathSciNet  Google Scholar 

  89. F. Stern, Phys. Rev. Lett. 18, 546 (1967).

    Article  Google Scholar 

  90. A. V. Chaplik, Zh. Eksp. Teor. Fiz. 62, 746 (1972) [Sov. Phys. JETP 35, 395 (1972)].

  91. T. N. Theis, J. R. Kirtley, D. J. DiMaria, D. W. Dong, Phys. Rev. Lett. 50, 750 (1983).

    Article  Google Scholar 

  92. E. N. Economou, Phys. Rev. 182, 539 (1969).

    Article  Google Scholar 

  93. J. J. Burke, G. I. Stegeman, T. Tamir, Phys. Rev. B 33, 5186 (1986).

    Article  Google Scholar 

  94. F. Yang, J. R. Sambles, G. W. Bradberry, Phys. Rev. B 44, 5855 (1991).

    Article  Google Scholar 

  95. V. Yu. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, Appl. Phys. Lett. 75, 3297 (1999).

    Article  Google Scholar 

  96. M. Goiran, M. Millot, J.-M. Poumirol, I. Gherasoiu, W. Walukiewicz, J. Leotin, Appl. Phys. Lett. 96, 052117 (2010).

    Article  Google Scholar 

  97. T. V. Shubina, S. V. Ivanov,V. N. Jmerik, D. D. Solnyshkov, V. A. Vekshin, P. S. Kop’ev, A. Vasson, J. Leymarie, A. Kavokin, H. Amano, K. Shimono, A. Kasic, B. Monemar, Phys. Rev. Lett. 92, 117407 (2004).

    Article  Google Scholar 

  98. J. Lecante, Y. Ballu, D. M. Newns, Phys. Rev. Lett. 38, 36 (1977).

    Article  Google Scholar 

  99. R. Z. Vitlina, A. V. Chaplik, Zh. Eksp. Teor. Fiz. 83, 1457 (1982) [Sov. Phys. JETP 56, 839 (1982)].

  100. V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, V. Yu. Panevin, A. N. Sofronov, G. A. Melentyev, A. V. Antonov, V. I. Gavrilenko, A. V. Andrianov, A. O. Zakharyin, S. Suihkonen, P. T. Törma, M. Ali, H.Lipsanen, J. Appl. Phys. 106, 123523 (2009).

    Article  Google Scholar 

  101. V. A. Shalygin, L. E. Vorob’ev, D. A. Firsov, V. Yu. Panevin, A. N. Sofronov, G. A. Melent’ev, A. V. Andrianov, A. O. Zakhar’in, N. N. Zinov’ev, S. Suihkonen, H. Lipsanen, Bull. Russ. Acad. Sci. Phys. 74, 86 (2010).

    Article  Google Scholar 

  102. M. Richter, S. Butscher, M. Schaarschmidt, A. Knorr, Phys. Rev. B 75, 115331 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

For the work reviewed in the article the authors acknowledge financial support through the National Science Foundation, U.S. Air Force Research Laboratory, ARL-Lehigh Cooperative Agreement, the Russian Foundation for Basic Research, and the Program of the Presidium of the Russian Academy of Sciences. Furthermore, T. V. Shubina thanks N.A. Gippius for many helpful discussions, V.A. Shalygin and A.V. Andrianov for the THz measurements at electrical pumping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Wilke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilke, I., Ding, Y.J. & Shubina, T.V. Optically- and Electrically-Stimulated Terahertz Radiation Emission from Indium Nitride. J Infrared Milli Terahz Waves 33, 559–592 (2012). https://doi.org/10.1007/s10762-012-9904-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-012-9904-z

Keywords

Navigation