Skip to main content
Log in

A Review on Thin-film Sensing with Terahertz Waves

  • Invited Review Article
  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In the past two decades, the development and steady improvement of terahertz technology has motivated a wide range of scientific studies designed to discover and develop terahertz applications. Terahertz sensing is one such application, and its continued maturation is virtually guaranteed by the unique properties that materials exhibit in the terahertz frequency range. Thin-film sensing is one branch of this effort that has enjoyed diverse development in the last decade. Deeply subwavelength sample thicknesses impose great difficulties to conventional terahertz spectroscopy, yet sensing those samples is essential for a large number of applications. In this article we review terahertz thin-film sensing, summarizing the motivation, challenges, and state-of-the-art approaches based predominately on terahertz time-domain spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B. B. Hu, and M. C. Nuss, “Imaging with terahertz waves,” Optics Letters, vol. 20, no. 16, pp. 1716–1718, 1995.

    Article  Google Scholar 

  2. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Applied Physics B, vol. 68, no. 6, pp. 1085–1094, 1999.

    Article  Google Scholar 

  3. Z. Jiang, and X.-C. Zhang, “Single-shot spatiotemporal terahertz field imaging,” Optics Letters, vol. 23, no. 14, pp. 1114–1116, 1998.

    Article  Google Scholar 

  4. J. O’Hara, and D. Grischkowsky, “Quasi-optic synthetic phased-array terahertz imaging,” Journal of the Optical Society of America B, vol. 21, no. 6, pp. 1178–1191, 2004.

    Article  Google Scholar 

  5. J. A. Zeitler, and L. F. Gladden, “In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 71, no. 1, pp. 2–22, 2009.

    Article  Google Scholar 

  6. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 10, pp. 2438–2447, 2004.

    Article  Google Scholar 

  7. E. Pickwell-MacPherson, and V. P. Wallace, “Terahertz pulsed imaging-A potential medical imaging modality?,” Photodiagnosis and Photodynamic Therapy, vol. 6, no. 2, pp. 128–134, 2009.

    Article  Google Scholar 

  8. M. Hishida, and K. Tanaka, “Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy,” Physical Review Letters, vol. 106, no. 15, p. 158102, 2011.

    Article  Google Scholar 

  9. J. Federici, and L. Moeller, “Review of terahertz and subterahertz wireless communications,” Journal of Applied Physics, vol. 107, no. 11, p. 111101, 2010.

    Article  Google Scholar 

  10. T. Kleine-Ostmann, and T. Nagatsuma, “A review on terahertz communications research,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 32, no. 2, pp. 143–171, 2011.

    Article  Google Scholar 

  11. T.-I. Jeon, and D. Grischkowsky, “Nature of conduction in doped silicon,” Physical Review Letters, vol. 78, no. 6, pp. 1106–1109, 1997.

    Article  Google Scholar 

  12. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Physical Review B, vol. 62, no. 23, pp. 15764–15777, 2000.

    Article  Google Scholar 

  13. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” Journal of Applied Physics, vol. 90, no. 12, p. 5915, 2001.

    Article  Google Scholar 

  14. R. D. Averitt, G. Rodriguez, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Conductivity artifacts in optical-pump THz-probe measurements of YBa2Cu3O7,” Journal of the Optical Society of America B, vol. 17, no. 2, pp. 327–331, 2000.

    Article  Google Scholar 

  15. M. Hangyo, M. Tani, and T. Nagashima, “Terahertz time-domain spectroscopy of solids: a review,” International Journal of Infrared and Millimeter Waves, vol. 26, no. 12, pp. 1661–1690, 2005.

    Article  Google Scholar 

  16. Zomega Terahertz Corporation, http://www.zomega-terahertz.com. Accessed 27 Feb 2012.

  17. Teraview Ltd., http://www.teraview.com/. Accessed 27 Feb 2012.

  18. Picometrix, LLC, http://www.picometrix.com/index.asp. Accessed 27 Feb 2012.

  19. W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Material thickness optimization for transmission-mode terahertz time-domain spectroscopy,” Optics Express, vol. 16, no. 10, pp. 7382–7396, 2008.

    Article  Google Scholar 

  20. D. Grischkowsky, S. Keiding, M. V. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” Journal of the Optical Society of America B, vol. 7, no. 10, pp. 2006–2015, 1990.

    Article  Google Scholar 

  21. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, no. 3, pp. 739–746, 1996.

    Article  Google Scholar 

  22. L. Duvillaret, F. Garet, and J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Applied Optics, vol. 38, no. 2, pp. 409–415, 1999.

    Article  Google Scholar 

  23. M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Buettner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Applied Physics Letters, vol. 77, no. 24, pp. 4049–4051, 2000.

    Article  Google Scholar 

  24. A. G. Markelz, “Terahertz dielectric sensitivity to biomolecular structure and function,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 1, pp. 180–190, 2008.

    Article  Google Scholar 

  25. M. Liang, S. Member, Z. Wu, L. Chen, and L. Song, “Terahertz characterization of single-walled carbon nanotube and graphene on-substrate thin films,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 10, pp. 2719–2725, 2011.

    Article  Google Scholar 

  26. L. Duvillaret, F. Garet, and J.-L. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” Journal of the Optical Society of America B, vol. 17, no. 3, pp. 452–461, 2000.

    Article  Google Scholar 

  27. W. Withayachumnankul, B. M. Fischer, H. Lin, and D. Abbott, “Uncertainty in terahertz time-domain spectroscopy measurement,” Journal of the Optical Society of America B, vol. 25, no. 6, pp. 1059–1072, 2008.

    Article  Google Scholar 

  28. C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two-dimensional equivalent of metamaterials,” Metamaterials, vol. 3, no. 2, pp. 100–112, 2009.

    Article  Google Scholar 

  29. M. A. Cooper, “Optical biosensors in drug discovery,” Nature Reviews Drug Discovery, vol. 1, no. 7, pp. 515–528, 2002.

    Article  Google Scholar 

  30. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 15, pp. 5976–5979, 2011.

    Article  Google Scholar 

  31. M. van Exter, and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 11, pp. 1684–1691, 1990.

    Article  Google Scholar 

  32. P. U. Jepsen, and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Optics Letters, vol. 30, no. 1, pp. 29–31, 2005.

    Article  Google Scholar 

  33. T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” Journal of the Optical Society of America A, vol. 18, no. 7, pp. 1562–1571, 2001.

    Article  Google Scholar 

  34. I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Optics Express, vol. 15, no. 7, pp. 1598–1609, 2007.

    Article  Google Scholar 

  35. M. Scheller, “Analyzing sub-100μm samples with transmission terahertz time domain spectroscopy,” Optics Communications, vol. 282, no. 7, pp. 1304–1306, 2009.

    Article  Google Scholar 

  36. W. Withayachumnankul, “Limitation in thin-film detection with transmission-mode terahertz time-domain spectroscopy,” Arxiv preprint arXiv:1111.3498, 2011.

  37. S. Krishnamurthy, M. T. Reiten, S. A. Harmon, and R. A. Cheville, “Characterization of thin polymer films using terahertz time-domain interferometry,” Applied Physics Letters, vol. 79, no. 6, pp. 875–877, 2001.

    Article  Google Scholar 

  38. Z. Jiang, M. Li, and X.-C. Zhang, “Dielectric constant measurement of thin films by differential time-domain spectroscopy,” Applied Physics Letters, vol. 76, no. 22, pp. 3221–3223, 2000.

    Article  Google Scholar 

  39. W. Withayachumnankul, G. M. Png, X. X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proceedings of the IEEE, vol. 95, no. 8, pp. 1528–1558, 2007.

    Article  Google Scholar 

  40. S. P. Mickan, K.-S. Lee, T.-M. Lu, J. Munch, D. Abbott, and X.-C. Zhang, “Double modulated differential THz–TDS for thin film dielectric characterization,” Microelectronics Journal, vol. 33, no. 12, pp. 1033–1042, 2002.

    Article  Google Scholar 

  41. S. P. Mickan, D. Abbott, J. Munch, and X.-C. Zhang, “Noise reduction in terahertz thin film measurement using a double modulated differential technique,” Fluctuation and Noise Letters, vol. 2, no. 1, pp. R13–R28, 2002.

    Article  Google Scholar 

  42. K.-S. Lee, T.-M. Lu, and X.-C. Zhang, “Tera Tool,” IEEE Circuits & Devices Magazine, vol. 18, no. 6, pp. 23–28, 2002.

    Article  Google Scholar 

  43. K.-S. Lee, T.-M. Lu, and X.-C. Zhang, “The measurement of the dielectric and optical properties of nano thin films by THz differential time-domain spectroscopy,” Microelectronics Journal, vol. 34, pp. 63–69, 2003.

    Article  Google Scholar 

  44. M. Brucherseifer, P. Haring Bolivar , and H. Kurz, “Combined optical and spatial modulation THz-spectroscopy for the analysis of thin-layered systems,” Applied Physics Letters, vol. 81, no. 10, pp. 1791–1793, 2002.

    Article  Google Scholar 

  45. S. P. Mickan, K.-S. Lee, T.-M. Lu, J. Munch, D. Abbott, and X.-C. Zhang, “Label-free bioaffinity detection using terahertz,” Physics in Medicine and Biology, vol. 47, pp. 3789–3795, 2002.

    Article  Google Scholar 

  46. A. Menikh, S. P. Mickan, H. Liu, R. Maccoll, and X.-C. Zhang, “Label-free amplified bioaffinity detection using terahertz wave technology,” Biosensors & Bioelectronics, vol. 20, no. 3, pp. 658–662, 2004.

    Article  Google Scholar 

  47. H.-B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X.-C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosensors & Bioelectronics, vol. 22, no. 6, pp. 1075–1080, 2007.

    Article  Google Scholar 

  48. D. Hashimshony, I. Geltner, G. Cohen, Y. Avitzour, A. Zigler, and C. Smith, “Characterization of the electrical properties and thickness of thin epitaxial semiconductor layers by THz reflection spectroscopy,” Journal of Applied Physics, vol. 90, no. 11, pp. 5778–5781, 2001.

    Article  Google Scholar 

  49. J. Dai, X. Xie, and X.-C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Physical Review Letters, vol. 97, no. 10, p. 103903, 2006.

    Article  Google Scholar 

  50. X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Physical Review Letters, vol. 96, no. 7, p. 075007, 2006.

    Article  Google Scholar 

  51. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nature Photonics, vol. 2, no. 10, pp. 605–609, 2008.

    Article  Google Scholar 

  52. M. Li, J. Fortin, J. Y. Kim, G. Fox, F. Chu, T. Davenport, T.-M. Lu, and X.-C. Zhang, “Dielectric constant measurement of thin films using goniometric terahertz time-domain spectroscopy,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 7, no. 4, pp. 624–629, 2001.

    Article  Google Scholar 

  53. M. Li, G. C. Cho, T. Lu, and X.-C. Zhang, “Time-domain dielectric constant measurement of thin film in GHz-THz frequency range near the Brewster angle,” Applied Physics Letters, vol. 74, no. 15, pp. 2113–2115, 1999.

    Article  Google Scholar 

  54. R. Azzam, and N. Bashara, Ellipsometry and Polarized Light. North Holland, 1988.

  55. T. Hofmann, C. Herzinger, J. Tedesco, D. Gaskill, J. Woollam, and M. Schubert, “Terahertz ellipsometry and terahertz optical-Hall effect,” Thin Solid Films, vol. 519, no. 9, pp. 2593–2600, 2011.

    Article  Google Scholar 

  56. T. Nagashima, and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Applied Physics Letters, vol. 79, no. 24, pp. 3917–3919, 2001.

    Article  Google Scholar 

  57. Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Physical Review B, vol. 70, no. 15, p. 155101, 2004.

    Article  Google Scholar 

  58. T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Review of Scientific Instruments, vol. 81, no. 2, p. 023101, 2010.

    Article  Google Scholar 

  59. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science, vol. 303, no. 5663, pp. 1494–1496, 2004.

    Article  Google Scholar 

  60. R. Sprik, I. N. Duling, C.-C. Chi, and D. Grischkowsky, “Far infrared spectroscopy with subpicosecond electrical pulses on transmission lines,” Applied Physics Letters, vol. 51, no. 7, pp. 548–550, 1987.

    Article  Google Scholar 

  61. R. Mendis, and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Optics Letters, vol. 26, no. 11, pp. 846–848, 2001.

    Article  Google Scholar 

  62. N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “High-resolution waveguide THz spectroscopy of biological molecules,” Biophysical Journal, vol. 94, no. 3, pp. 1010–1020, 2008.

    Article  Google Scholar 

  63. G. Gallot, S. P. Jamison, R. W. Mcgowan, and D. Grischkowsky, “Terahertz waveguides,” Journal of the Optical Society of America B, vol. 17, no. 5, pp. 851–863, 2000.

    Article  Google Scholar 

  64. R. Mendis, and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microwave and Wireless Components Letters, vol. 11, no. 11, pp. 444–446, 2001.

    Article  Google Scholar 

  65. M. Theuer, S. S. Harsha, and D. Grischkowsky, “Flare coupled metal parallel-plate waveguides for high resolution terahertz time-domain spectroscopy,” Journal of Applied Physics, vol. 108, no. 11, p. 113105, 2010.

    Article  Google Scholar 

  66. J. S. Melinger, N. Laman, S. S. Harsha, S. Cheng, and D. Grischkowsky, “High-resolution waveguide terahertz spectroscopy of partially oriented organic polycrystalline films,” Journal of Physical Chemistry A, vol. 111, no. 43, pp. 10977–10987, 2007.

    Article  Google Scholar 

  67. N. Laman, S. S. Harsha, and D. Grischkowsky, “Narrow-line waveguide terahertz time-domain spectroscopy of aspirin and aspirin precursors,” Applied Spectroscopy, vol. 62, no. 3, pp. 319–326, 2008.

    Article  Google Scholar 

  68. J. Zhang, and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer water layers,” Optics Letters, vol. 29, no. 14, pp. 1617–1619, 2004.

    Article  Google Scholar 

  69. J. Zhang, and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Applied Physics Letters, vol. 86, no. 6, p. 061109, 2005.

    Article  Google Scholar 

  70. J. S. Melinger, S. S. Harsha, N. Laman, and D. Grischkowsky, “Guided-wave terahertz spectroscopy of molecular solids,” Journal of the Optical Society of America B, vol. 26, no. 9, pp. A79–A89, 2009.

    Article  Google Scholar 

  71. B. M. Fischer, H. Helm, and P. U. Jepsen, “Broadband THz spectroscopy,” Proceedings of the IEEE, vol. 95, no. 8, pp. 1592–1604, 2007.

    Article  Google Scholar 

  72. J. S. Melinger, N. Laman, and D. Grischkowsky, “The underlying terahertz vibrational spectrum of explosives solids,” Applied Physics Letters, vol. 93, no. 1, p. 011102, 2008.

    Article  Google Scholar 

  73. N. Laman, S. Sree Harsha , D. Grischkowsky, and J. S. Melinger, “7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,” Optics Express, vol. 16, no. 6, pp. 4094–4105, 2008.

    Article  Google Scholar 

  74. D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” ChemPhysChem, vol. 8, no. 17, pp. 2412–2431, 2007.

    Article  Google Scholar 

  75. J. S. Melinger, S. S. Harsha, N. Laman, and D. Grischkowsky, “Temperature dependent characterization of terahertz vibrations of explosives and related threat materials,” Optics Express, vol. 18, no. 26, pp. 27238–27250, 2010.

    Article  Google Scholar 

  76. S. S. Harsha, and D. Grischkowsky, “Terahertz (far-infrared) characterization of tris(hydroxymethyl)aminomethane using high-resolution waveguide THz–TDS.,” Journal of Physical Chemistry A, vol. 114, no. 10, pp. 3489–3494, 2010.

    Article  Google Scholar 

  77. Personal communication with Joseph Melinger.

  78. V. H. Whitley, D. E. Hooks, K. J. Ramos, J. F. O’Hara, A. K. Azad, A. J. Taylor, J. Barber, and R. D. Averitt, “Polarization orientation dependence of the far infrared spectra of oriented single crystals of 1,3,5-trinitro-S-triazine (RDX) using terahertz time-domain spectroscopy,” Analytical and Bioanalytical Chemistry, vol. 395, no. 2, pp. 315–322, 2009.

    Article  Google Scholar 

  79. V. H. Whitley, D. E. Hooks, K. J. Ramos, T. H. Pierce, J. F. O’Hara, A. K. Azad, A. J. Taylor, J. Barber, and R. D. Averitt, “Orientation dependent far-infrared terahertz absorptions in single crystal pentaerythritol tetranitrate (PETN) using terahertz time-domain spectroscopy,” Journal of Physical Chemistry A, vol. 115, no. 4, pp. 439–442, 2011.

    Article  Google Scholar 

  80. M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Applied Physics Letters, vol. 48, no. 12, pp. 751–753, 1986.

    Article  Google Scholar 

  81. J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, and H. E. Beere, “Terahertz frequency range band-stop filters,” Applied Physics Letters, vol. 86, no. 21, p. 213503, 2005.

    Article  Google Scholar 

  82. J. Kitagawa, T. Ohkubo, M. Onuma, and Y. Kadoya, “THz spectroscopic characterization of biomolecule/water systems by compact sensor chips,” Applied Physics Letters, vol. 89, no. 4, p. 041114, 2006.

    Article  Google Scholar 

  83. T. Ohkubo, M. Onuma, J. Kitagawa, and Y. Kadoya, “Micro-strip-line-based sensing chips for characterization of polar liquids in terahertz regime,” Applied Physics Letters, vol. 88, no. 21, p. 212511, 2006.

    Article  Google Scholar 

  84. C. Wood, J. Cunningham, I. C. Hunter, P. Tosch, E. H. Linfield, and A. G. Davies, “On-chip pulsed terahertz systems and their applications,” International Journal of Infrared and Millimeter Waves, vol. 27, no. 4, pp. 557–569, 2006.

    Article  Google Scholar 

  85. M. B. Byrne, J. Cunningham, K. Tych, A. D. Burnett, M. R. Stringer, C. D. Wood, L. Dazhang, M. Lachab, E. H. Linfield, and A. G. Davies, “Terahertz vibrational absorption spectroscopy using microstrip-line waveguides,” Applied Physics Letters, vol. 93, no. 18, p. 182904, 2008.

    Article  Google Scholar 

  86. J. Cunningham, M. Byrne, C. D. Wood, and L. Dazhang, “On-chip terahertz systems for spectroscopy and imaging,” Electronics Letters, vol. 46, no. 26, pp. S34–S37, 2010.

    Article  Google Scholar 

  87. M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buettner, “Integrated THz technology for label-free genetic diagnostics,” Applied Physics Letters, vol. 80, no. 1, pp. 154–156, 2002.

    Article  Google Scholar 

  88. P. Haring Bolivar, M. Nagel, F. Richter, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free THz sensing of genetic sequences: towards ‘THz biochips’,” Philosophical Transactions of the Royal Society A, vol. 362, no. 1815, pp. 323–335, 2004.

    Article  Google Scholar 

  89. T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: a numerical study,” Journal of Biological Physics, vol. 29, no. 2–3, pp. 187–194, 2003.

    Article  Google Scholar 

  90. C. K. Tiang, J. Cunningham, C. Wood, I. C. Hunter, and A. G. Davies, “Electromagnetic simulation of terahertz frequency range filters for genetic sensing,” Journal of Applied Physics, vol. 100, no. 6, p. 066105, 2006.

    Article  Google Scholar 

  91. M. Nagel, and H. Kurz, “Corrugated waveguide based genomic biochip for marker-free THz read-out,” International Journal of Infrared and Millimeter Waves, vol. 27, no. 4, pp. 517–529, 2006.

    Article  Google Scholar 

  92. M. Neshat, and S. Safavi-Naeini, “Performance analysis of resonance-based transducers in terahertz bio-chips using equivalent surface impedance model,” IEEE Photonics Technology Letters, vol. 22, no. 20, pp. 1512–1514, 2010.

    Article  Google Scholar 

  93. M. Nagel, F. Richter, P. Haring Bolivar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Physics in Medicine and Biology, vol. 48, pp. 3625–3636, 2003.

    Article  Google Scholar 

  94. H.-J. Lee, J. Lee, and H. Jung, “A symmetric metamaterial element-based RF biosensor for rapid and label-free detection,” Applied Physics Letters, vol. 99, p. 163703, 2011.

    Article  Google Scholar 

  95. P. Haring Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of genes by time-domain terahertz sensing.,” Physics in Medicine and Biology, vol. 47, no. 21, pp. 3815–3821, 2002.

    Article  Google Scholar 

  96. H. Kurt, and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Applied Physics Letters, vol. 87, no. 4, p. 041108, 2005.

    Article  Google Scholar 

  97. H. Kurt, and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Applied Physics Letters, vol. 87, no. 24, p. 241119, 2005.

    Article  Google Scholar 

  98. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Applied Physics Letters, vol. 95, no. 17, p. 171113, 2009.

    Article  Google Scholar 

  99. M. Nagel, P. Haring Bolivar, and H. Kurz, “Modular parallel-plate THz components for cost-efficient biosensing systems,” Semiconductor Science and Technology, vol. 20, no. 7, pp. S281–S285, 2005.

    Article  Google Scholar 

  100. Z. Jakšić, S. Vuković, J. Matović, and D. Tanasković, “Negative refractive index metasurfaces for enhanced biosensing,” Materials, vol. 4, no. 1, pp. 1–36, 2011.

    Article  Google Scholar 

  101. W. Withayachumnankul, and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics Journal, vol. 1, no. 2, pp. 99–118, 2009.

    Article  Google Scholar 

  102. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999.

    Article  Google Scholar 

  103. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Applied Physics Letters, vol. 91, no. 6, p. 062511, 2007.

    Article  Google Scholar 

  104. Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Applied Physics Letters, vol. 92, no. 22, p. 221101, 2008.

    Article  Google Scholar 

  105. C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Optics Express, vol. 16, no. 23, pp. 18565–18575, 2008.

    Article  Google Scholar 

  106. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Optics Express, vol. 16, no. 3, pp. 1786–1795, 2008.

    Article  Google Scholar 

  107. S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Applied Physics Letters, vol. 94, no. 6, p. 064102, 2009.

    Article  Google Scholar 

  108. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” Journal of Physics D: Applied Physics, vol. 41, no. 23, p. 232004, 2008.

    Article  Google Scholar 

  109. X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Applied Physics Letters, vol. 94, no. 16, p. 161113, 2009.

    Article  Google Scholar 

  110. S.-Y. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Applied Physics Letters, vol. 97, no. 19, p. 191906, 2010.

    Article  Google Scholar 

  111. H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Applied Physics Letters, vol. 97, no. 26, p. 261909, 2010.

    Article  Google Scholar 

  112. A. Elhawil, J. Stiens, C. Tandt, W. Ranson, and R. Vounckx, “Thin-film sensing using circular split-ring resonators at mm-wave frequencies,” Applied Physics A, vol. 103, no. 3, pp. 623–626, 2011.

    Article  Google Scholar 

  113. H. Tao, L. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Advanced Materials, vol. 23, pp. 3197–3201, 2011.

    Article  Google Scholar 

  114. W. Withayachumnankul, H. Lin, K. Serita, C. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Optics Express, vol. 20, no. 3, pp. 3345–3352, 2012.

    Article  Google Scholar 

  115. M. Huang, J. Yang, J. Sun, J. Shi, and J. Peng, “Modelling and analysis of Ω-shaped double negative material-assisted microwave sensor,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 30, no. 11, pp. 1131–1138, 2009.

    Article  Google Scholar 

  116. X.-J. He, L. Qiu, Y. Wang, Z.-X. Geng, J.-M. Wang, and T.-L. Gui, “A compact thin-film sensor based on nested split-ring-resonator (SRR) metamaterials for microwave applications,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 32, no. 7, pp. 902–913, 2011.

    Article  Google Scholar 

  117. V. Fedotov, M. Rose, S. Prosvirnin, N. Papasimakis, and N. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Physical Review Letters, vol. 99, p. 147401, 2007.

    Article  Google Scholar 

  118. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Optics Express, vol. 19, no. 7, pp. 6312–6319, 2011.

    Article  Google Scholar 

  119. S. Prosvirnin, and S. Zouhdi, “Resonances of closed modes in thin arrays of complex particles,” in Advances in Electromagnetics of Complex Media and Metamaterials (S. Zouhdi, A. Sihvola, and A. Arsalane, eds.), vol. 188, pp. 281–290, Kluwer, The Netherlands, 2003.

    Google Scholar 

  120. I. A. I. Al-Naib, C. Jansen, and M. Koch, “Applying the Babinet principle to asymmetric resonators,” Electronics Letters, vol. 44, no. 21, pp. 1228–1229, 2008.

    Article  Google Scholar 

  121. C. Debus, and P. Haring Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Applied Physics Letters, vol. 91, no. 18, p. 184102, 2007.

    Article  Google Scholar 

  122. I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Applied Physics Letters, vol. 93, no. 8, p. 083507, 2008.

    Article  Google Scholar 

  123. I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Applied Physics Letters, vol. 94, no. 15, p. 153505, 2009.

    Article  Google Scholar 

  124. C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Applied Physics Letters, vol. 98, no. 5, p. 051109, 2011.

    Article  Google Scholar 

  125. I. A. Ibraheem, and M. Koch, “Coplanar waveguide metamaterials: the role of bandwidth modifying slots,” Applied Physics Letters, vol. 91, no. 11, p. 113517, 2007.

    Article  Google Scholar 

  126. W.-C. Chen, J. Mock, D. Smith, T. Akalin, and W. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Physical Review X, vol. 1, no. 2, pp. 1–6, 2011.

    Google Scholar 

  127. A. Sihvola, J. Qi, and I. V. Lindell, “Bridging the gap between plasmonics and Zenneck waves,” IEEE Antennas and Propagation Magazine, vol. 52, no. 1, pp. 124–136, 2010.

    Article  Google Scholar 

  128. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, 1988.

  129. C.-P. Huang, and Y.-Y. Zhu, “Plasmonics: manipulating light at the subwavelength scale,” Active and Passive Electronic Components, vol. 2007, pp. 1–13, 2007.

    Article  Google Scholar 

  130. J. Saxler, J. Gómez Rivas, C. Janke, H. Pellemans, P. Haring Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Physical Review B, vol. 69, p. 155427, 2004.

    Article  Google Scholar 

  131. J. O’Hara, R. Averitt, and A. Taylor, “Prism coupling to terahertz surface plasmon polaritons,” Optics Express, vol. 13, no. 16, pp. 6117–6126, 2005.

    Article  Google Scholar 

  132. N. C. J. van der Valk, and P. C. M. Planken, “Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires,” Applied Physics Letters, vol. 87, no. 7, p. 071106, 2005.

    Article  Google Scholar 

  133. T.-I. Jeon, and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Applied Physics Letters, vol. 88, no. 6, p. 061113, 2006.

    Article  Google Scholar 

  134. K. Wang, and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature, vol. 432, no. 18, pp. 376–379, 2004.

    Article  Google Scholar 

  135. J. Deibel, K. Wang, M. Escarra, and D. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Optics Express, vol. 14, no. 1, pp. 279–290, 2006.

    Article  Google Scholar 

  136. K. Wang, and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” Journal of the Optical Society of America B, vol. 22, no. 9, pp. 2001–2008, 2005.

    Article  Google Scholar 

  137. M. Waechter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Optics Express, vol. 13, no. 26, pp. 10815–10822, 2005.

    Article  Google Scholar 

  138. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Applied Physics Letters, vol. 86, no. 16, p. 161904, 2005.

    Article  Google Scholar 

  139. M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Optics Express, vol. 17, no. 19, pp. 17088–17101, 2009.

    Article  Google Scholar 

  140. M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Applied Physics Letters, vol. 87, no. 26, p. 261107, 2005.

    Article  Google Scholar 

  141. M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Applied Physics Letters, vol. 97, no. 7, p. 071106, 2010.

    Article  Google Scholar 

  142. M. Theuer, R. Beigang, and D. Grischkowsky, “Sensitivity increase for coating thickness determination using THz waveguides,” Optics Express, vol. 18, no. 11, pp. 11456–11463, 2010.

    Article  Google Scholar 

  143. A. Hassani, and M. Skorobogatiy, “Surface plasmon resonance-like integrated sensor at terahertz frequencies for gaseous analytes,” Journal of the Optical Society of America B, vol. 25, no. 10, pp. 1771–1775, 2008.

    Article  Google Scholar 

  144. A. Hassani, and M. Skorobogatiy, “Integrated sensor at terahertz frequencies for gaseous analytes,” Optics Express, vol. 16, no. 25, pp. 20206–20214, 2008.

    Article  Google Scholar 

  145. S. Atakaramians, A. V. Shahraam, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides.,” Optics Express, vol. 16, no. 12, pp. 8845–8854, 2008.

    Article  Google Scholar 

  146. S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Applied Physics Letters, vol. 98, no. 12, p. 121104, 2011.

    Article  Google Scholar 

  147. J. Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Physical Review Letters, vol. 93, no. 25, pp. 1–4, 2004.

    Article  Google Scholar 

  148. T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Applied Physics Letters, vol. 93, no. 24, p. 241115, 2008.

    Article  Google Scholar 

  149. T. Ebbesen, H. Lezec, H. F. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, no. 12, pp. 667–669, 1998.

    Article  Google Scholar 

  150. J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” Journal of Applied Physics, vol. 103, no. 3, p. 033108, 2008.

    Article  Google Scholar 

  151. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Applied Physics Letters, vol. 91, no. 25, p. 253901, 2007.

    Article  Google Scholar 

  152. T. Hasebe, Y. Yamada, and H. Tabata, “Label-free THz sensing of living body-related molecular binding using a metallic mesh,” Biochemical and Biophysical Research Communications, vol. 414, no. 1, pp. 192–198, 2011.

    Article  Google Scholar 

  153. F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Applied Physics Letters, vol. 96, no. 2, p. 021106, 2010.

    Article  Google Scholar 

  154. T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Applied Physics Letters, vol. 96, no. 21, p. 211114, 2010.

    Article  Google Scholar 

Download references

Acknowledgements

WW acknowledges Bernd M. Fischer, French-German Research Institute of Saint-Louis (ISL), for useful discussion and the Australian Post-Doctoral Fellowship from the Australian Research Council (ARC) through Discovery Project DP1095151. IA would like to thank the Natural Sciences and Engineering Research Council of Canada for the financial support. JO, WW, and IA wish to thank all the authors and publishers who graciously loaned their figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. O’Hara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Hara, J.F., Withayachumnankul, W. & Al-Naib, I. A Review on Thin-film Sensing with Terahertz Waves. J Infrared Milli Terahz Waves 33, 245–291 (2012). https://doi.org/10.1007/s10762-012-9878-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-012-9878-x

Keywords

Navigation