Skip to main content
Log in

Semi-Analytical Calculation of Terahertz Signal Generated from Photocurrent Radiation in Traveling-Wave Photonic Mixers

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A semi-analytical method based on distributed source transmission line model is proposed to analyze a traveling-wave terahertz photomixer integrated with a coplanar stripline waveguide. Multilayer spectral domain method along with complex image technique have been applied to calculate the distributed voltage source element in the transmission line representation. To find the coupled terahertz signal along the coplanar stripline, the transmission line equations are solved. The results obtained from the proposed method are verified by the full wave analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys.: Condens. Matter 18, 601–618 (2006).

    Article  Google Scholar 

  2. S. M. Kim, F. Hatami, and J. S. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).

    Article  Google Scholar 

  3. P. F. Taday, “Applications of terahertz spectroscopy to pharmaceutical sciences,” Phil. Trans. R. Soc. Lond. A 362(1815), 351–364 (2004).

    Google Scholar 

  4. N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, et al., “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 54, 105–3 (2005).

    Article  Google Scholar 

  5. R. Piesiewicz, J. Jemaia, M. Kochb, and T. Kürnera, THz channel characterization for future wireless gigabit indoor communication systems, in The Proceedings of SPIE Conference, 2005 vol. 5727, pp. 166–176.

  6. E. A. Michael, “Travelling-wave photonic mixers for increased continuous-wave power beyond 1 THz,” Semicond. Sci. Technol. 20, 164–177 (2005).

    Google Scholar 

  7. M. C. Teich, “Field-theoretical treatment of photomixing,” Appl. Phys. Lett. 14(6), 201–203 (1969).

    Article  Google Scholar 

  8. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, et al., “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Elec. 41(5), 717–728 (2005).

    Article  Google Scholar 

  9. D. Saeedkia and S. Safavi-Naeini, “A comprehensive model for photomixing in ultrafast photoconductors,” IEEE Photonics Technol. Lett. 18(13), 1457–1459 (2006).

    Article  Google Scholar 

  10. D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “Modeling and analysis of high-temperature superconductor terahertz photomixers,” IEEE Trans. Appl. Superconduct. 15(3), 3847–3855 (2005).

    Google Scholar 

  11. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).

    Article  Google Scholar 

  12. D. Saeedkia, S. Safavi-Naeini, and R. R. Mansour, “The intraction of laser and photoconductor in a continuous-wave terahertz photomixer,” IEEE J. Quantum Elec. 41(9), 1188–1196 (2005).

    Article  Google Scholar 

  13. S. Ichikawa, “Analysis of transmission lines with distributed sources,” Electron. & Commun. Jpn. (Part I: Commun.) 69(2), 57–65 (1986).

    Article  MathSciNet  Google Scholar 

  14. F. Mesa, C. Di Nallo, and D. R. Jackson, “The theory of surface-wave and space-wave leaky-mode excitation on microstrip lines,” IEEE Trans. Microwave Theory Tech. 47(2), 207–215 (1999).

    Article  Google Scholar 

  15. D. Pasqualini, A. Neto, and R. A. Wyss, “Distributed sources on coplanar waveguides: application to photomixers for THz local oscillators,” Microw. Opt. Technol. Lett. 33(6), 430–435 (2002).

    Article  Google Scholar 

  16. D. Saeedkia and S. Safavi-Naeini, “Modeling and analysis of a multilayer dielectric slab waveguide with applications in edge-coupled terahertz photomixer sources,” J. Lightwave Technol. 25(1), 432–439 (2007).

    Article  Google Scholar 

  17. P. Bernardi and R. Cicchetti, “Response of a planar microstrip line excited by an external electromagnetic field,” IEEE Trans. Electromag. Compat. 32(2), 98–105 (1990).

    Article  Google Scholar 

  18. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE Press, 1994).

  19. M. I. Aksun and R. Mittra, “Derivation of closed-form Green’s functions for a general microstrip geometry,” IEEE Trans. Microwave Theory Tech. 40(11), 2055–2062 (1992).

    Article  Google Scholar 

  20. N. Hojjat, S. Safavi-Naeini, and Y. L. Chow, “Numerical computation of complex image Green’s functions for multilayer dielectric media: near-field zone and the interface region,” IEE Proc.-Microw. Antennas Propag. 145(6), 449–454 (1998).

    Article  Google Scholar 

  21. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).

    Google Scholar 

  22. HFSS 10.1, Ansoft Corporation, http://www.ansoft.com.

  23. R. E. Collin, Field Theory of Guided Waves, 2nd Ed. (IEEE Press, 1990).

  24. S. Matsuura, G. A. Blake, R. A. Wyss, J. C. Pearson, C. Kadow, A. W. Jackson, et al., “A traveling-wave THz photomixer based on angle-tuned phase matching,” Appl. Phys. Lett. 74(19), 2872–2874 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Neshat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neshat, M., Saeedkia, D. & Safavi-Naeini, S. Semi-Analytical Calculation of Terahertz Signal Generated from Photocurrent Radiation in Traveling-Wave Photonic Mixers. Int J Infrared Milli Waves 29, 809–822 (2008). https://doi.org/10.1007/s10762-008-9388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9388-z

Keywords

Navigation