Skip to main content
Log in

Salidroside Attenuates LPS-Induced Acute Lung Injury in Rats

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The purpose of the present study was to investigate the effects of salidroside (Sal) on lung injury in lipopolysaccharide (LPS)-induced endotoxemic in vitro and in vivo. SD rats were randomly divided into five groups: control group, LPS group (15 mg kg−1), LPS plus dexamethasone (2 mg kg−1), and LPS plus Sal groups with different Sal doses (20 mg kg−1, 40 mg kg−1). Wet-to-dry weight (W/D) ratio was performed. Hematoxylin–eosin (HE) staining of lung was performed. Lung level of myeloperoxidase (MPO) was measured. Serum levels of the activities of the anti-oxidant superoxide dismutase (SOD), glutathione peroxidase (GSH-px), glutathione (GSH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were measured. Caveolin-1 and TLR/NF-κB pathway proteins were detected by Western blot. In vitro, we evaluated the protective effect of Sal on A549 cell line induced by LPS. The activities of the antioxidant SOD, CAT, GSH and GPX, TNF-α, IL-6, and IL-1β in cellular supernatant were measured. Caveolin-1 and TLR/NF-κB pathway was examined by Western blot. As a result, Sal significantly attenuated the above indices. In addition, Sal exerts pronounced protective effects in rats subjected to LPS possibly through inhibiting the caveolin-1 and TLR/NF-κB pathway in vivo. Our results indicated that Sal could be a potential therapeutic agent for the treatment of lung injury disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aggarwal, N.R., L.S. King, and F.R. D'Alessio. 2014. Diverse macrophage populations mediate acute lung inflammation and resolution. American Journal of Physiology. Lung Cellular and Molecular Physiology 306 (8): L709–L725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ware, L.B., and M.A. Matthay. 2000. The acute respiratory distress syndrome. The New England Journal of Medicine 342 (18): 1334–1349.

    Article  CAS  PubMed  Google Scholar 

  3. Zemans, R.L., S.P. Colgan, and G.P. Downey. 2009. Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. American Journal of Respiratory Cell and Molecular Biology 40: 519–535.

    Article  CAS  PubMed  Google Scholar 

  4. Newman, J.W., C. Morisseau, and B.D. Hammock. 2005. Epoxide hydrolases: Their roles and interactions with lipid metabolism. Progress in Lipid Research 44: 1–51.

    Article  CAS  PubMed  Google Scholar 

  5. Ludwig, A., Nguyen, T.H., Leong, D., Ravi, L.I., Huan, T.B., Sandin, S., Sugrue, R.J. 2017. Caveolae provide a specialized membrane environment for respiratory syncytial virus assembly. J Cell Sci (in press).

  6. Busija, A.R., Patel, H.H., Insel, P.A. 2017. Hugh Davson distinguished lectureship article caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology. Am J Physiol Cell Physiol. 25:ajpcell.00355.2016.

  7. Charles, S., V. Raj, J. Arokiaraj, and K. Mala. 2017. Caveolin1/protein arginine methyltransferase1/sirtuin1 axis as a potential target against endothelial dysfunction. Pharmacological Research 119: 1–11.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, T., L. Xiao, L. Zhu, S. Ma, T. Yan, and H. Ji. 2015. Anti-asthmatic effects of ginsenoside Rb1 in a mouse model of allergic asthma through relegating Th1/Th2. Inflammation 38: 1814–1822.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, T., J. Gao, P. Xiang, Y. Chen, J. Ji, P. Xie, H. Wu, W. Xiao, Y. Wei, S. Wang, L. Lan, H. Ji, and T. Yan. 2015. Protective effect of platycodin D on liver injury in alloxan-induced diabetic mice via regulation of Treg/Th17 balance. International Immunopharmacology 26: 338–348.

    Article  CAS  PubMed  Google Scholar 

  10. Boucherie, S., C. Decaens, J.M. Verbavatz, B. Grosse, M. Erard, F. Merola, et al. 2013. Cadmium disorganises the scaffolding of gap and tight junction proteins in the hepatic cell line WIF B9. Biology of the Cell 105 (12): 561–575.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu, Y., Y.P. Shi, D. Wu, Y.J. Ji, X. Wang, H.L. Chen, et al. 2011. Salidroside protects against hydrogen peroxide-induced injury in cardiac H9c2 cells via PI3K-Akt dependent pathway. DNA and Cell Biology 30 (10): 809–819.

    Article  PubMed  Google Scholar 

  12. Tan, C.B., M. Gao, W.R. Xu, X.Y. Yang, X.M. Zhu, and G.H. Du. 2009. Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride. Biological & Pharmaceutical Bulletin 32 (8): 1359–1363.

    Article  CAS  Google Scholar 

  13. Mao, G.X., H.B. Deng, L.G. Yuan, D.D. Li, Y.Y. Li, and Z. Wang. 2010. Protective role of salidroside against aging in a mouse model induced by D-galactose. DNA and Cell Biology 23 (2): 161–166.

    CAS  Google Scholar 

  14. Hu, X., S. Lin, D. Yu, S. Qiu, X. Zhang, and R. Mei. 2010. A preliminary study: the anti-proliferation effect of salidroside on different human cancer cell lines. Cell Biology and Toxicology 26 (6): 499–507.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, J., J.Z. Li, A.X. Lu, K.F. Zhang, and B.J. Li. 2014. Anticancer effect of salidroside on A549 lung cancer cells through inhibition of oxidative stress and phospho-p38 expression. Oncology Letters 7 (4): 1159–1164.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu, L., T. Wei, X. Chang, H. He, J. Gao, Z. Wen, and T. Yan. 2015. Effects of Salidroside on myocardial injury in vivo in vitro via regulation of Nox/NF-kappaB/AP1 pathway. Inflammation 38: 1589–1598.

    Article  CAS  PubMed  Google Scholar 

  17. Zhong, S., Y.C. Nie, Z.Y. Gan, X.D. Liu, Z.F. Fang, B.N. Zhong, J. Tian, C.Q. Huang, K.F. Lai, and N.S. Zhong. 2015. Effects of Schisandra chinensis extracts on cough and pulmonary inflammation in a cough hypersensitivity guinea pig model induced by cigarette smoke exposure. Journal of Ethnopharmacology 165: 73–82.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, X.L., X. Wang, L.L. Xiong, Y. Zhu, H.L. Chen, J.X. Chen, X.X. Wang, R.L. Li, Z.Y. Guo, P. Li, and W. Jiang. 2013. Salidroside improves doxorubicin-induced cardiac dysfunction by suppression of excessive oxidative stress and cardiomyocyte apoptosis. Journal of Cardiovascular Pharmacology. 62: 512–523.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, X., L. Jin, N. Shen, B. Xu, W. Zhang, H. Zhu, and Z. Luo. 2013. Salidroside inhibits endogenous hydrogen peroxide induced cytotoxicity of endothelial cells. Biological & Pharmaceutical Bulletin. 36: 1773–1778.

    Article  CAS  Google Scholar 

  20. Zhang, K., J. Liu, X. You, P. Kong, Y. Song, L. Cao, S. Yang, W. Wang, Q. Fu, and Z. Ma. 2016. P2X7 as a new target for chrysophanol to treat lipopolysaccharide-induced depression in mice. Neuroscience Letters 613: 60–65.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, T., Q. Guo, H. Wang, H. Zhang, C. Wang, P. Zhang, S. Meng, Y. Li, H. Ji, and T. Yan. 2015. Effects of esculetin on lipopolysaccharide (LPS)-induced acute lung injury via regulation of RhoA/rho kinase/NF-small ka, cyrillicB pathways in vivo and in vitro. Free Radical Research 49: 1459–1468.

    Article  CAS  PubMed  Google Scholar 

  22. Lyu, Y., X. Jiang, and W. Dai. 2015. The roles of a novel inflammatory neopterin in subjects with coronary atherosclerotic heart disease. International Immunopharmacology 24: 169–172.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, L., P. Wang, C. Liang, D. He, Y. Yu, and X. Liu. 2013. Distinct effects of Nampt inhibition on mild and severe models of lipopolysaccharide-induced myocardial impairment. International Immunopharmacology 17: 342–349.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang, Q., M. Yi, Q. Guo, C. Wang, H. Wang, S. Meng, C. Liu, Y. Fu, H. Ji, and T. Chen. 2015. Protective effects of polydatin on lipopolysaccharide-induced acute lung injury through TLR4-MyD88-NF-kappaB pathway. International Immunopharmacology 29: 370–376.

    Article  CAS  PubMed  Google Scholar 

  25. Chang, X., H. He, L. Zhu, J. Gao, T. Wei, Z. Ma, and T. Yan. 2015. Protective effect of apigenin on Freund's complete adjuvant-induced arthritis in rats via inhibiting P2X7/NF-kappaB pathway. Chemico-biological Interactions. 236: 41–46.

    Article  CAS  PubMed  Google Scholar 

  26. Zhu, L., T. Wei, J. Gao, X. Chang, H. He, F. Luo, R. Zhou, C. Ma, Y. Liu, and T. Yan. 2015. The cardioprotective effect of salidroside against myocardial ischemia reperfusion injury in rats by inhibiting apoptosis and inflammation. Apoptosis: an International Journal on Programmed Cell Death. 20: 1433–1443.

    Article  CAS  Google Scholar 

  27. Jing, W., M. Chunhua, and W. Shumin. 2015. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-kappaB pathway in vivo and in vitro. Toxicology and Applied Pharmacology. 285: 128–135.

    Article  CAS  PubMed  Google Scholar 

  28. Hu, Q., B. Wei, L. Wei, K. Hua, X. Yu, H. Li, and H. Ji. 2015. Sodium tanshinone IIA sulfonate ameliorates ischemia-induced myocardial inflammation and lipid accumulation in beagle dogs through NLRP3 inflammasome. International Journal of Cardiology.

  29. Chen. T., Wang, R., Jiang, W., Wang, H., Xu, A., Lu, G., Ren, Y., Xu, Y., Song, Y., Yong, S., Ji, H., Ma, Z. 2015. Protective effect of astragaloside IV against paraquat-induced lung injury in mice by suppressing rho signaling. Inflammation.

  30. Akgullu, C., M.A. Huyut, M. Boyacioglu, O. Gules, U. Eryilmaz, T. Hekim, E. Dogan, C. Zencir, and H. Gungor. 2015. Nebivolol to attenuate the effects of hyper-homocysteinaemia in rats. Atherosclerosis 240: 33–39.

    Article  CAS  PubMed  Google Scholar 

  31. You, R., W. Long, Z. Lai, L. Sha, K. Wu, X. Yu, Y. Lai, H. Ji, Z. Huang, and Y. Zhang. 2013. Discovery of a potential anti-inflammatory agent: 3-oxo-29-noroleana-1,9(11),12-trien-2,20-dicarbonitrile. Journal of Medicinal Chemistry. 56: 1984–1995.

    Article  CAS  PubMed  Google Scholar 

  32. Lou, T., W. Jiang, D. Xu, T. Chen, and Y. Fu. 2015. Inhibitory effects of Polydatin on lipopolysaccharide-stimulated RAW 264.7 cells. Inflammation 38: 1213–1220.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Twelve Five Major Drug Discovery Project (2011ZX09102-002-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Tianhua or Miao Mingxing.

Ethics declarations

Competing Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jingyan, L., Yujuan, G., Yiming, Y. et al. Salidroside Attenuates LPS-Induced Acute Lung Injury in Rats. Inflammation 40, 1520–1531 (2017). https://doi.org/10.1007/s10753-017-0593-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0593-6

KEY WORDS

Navigation