Skip to main content

Advertisement

Log in

CDK11p58 Promotes Microglia Activation via Inducing Cyclin D3 Nuclear Localization

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Microglia activation has been implicated in the pathogenesis of many neurological diseases. These reactive microglia are capable of producing a variety of proinflammatory mediators and potentially neurotoxic compounds. The increase of cell number and expression of CD11b are the main features of activated microglia. In this study, we examined the suppressive effects of CDK11p58 on microglia activation induced by lipopolysaccharide (LPS) in vitro. We found that in the activated microglia, the expression of CDK11p58 increased and the overexpression of CDK11p58 could reduce the increased proliferation and CD11b expression in LPS-activated microglia. Such suppressive effects might be resulted from the interaction with cyclin D3 which promoted CDK11p58 nuclear localization. Our results suggested that CDK11p58 acted to regulate microglia activation through CDK11p58 and cyclin D3 interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Bajić, V.P., B. Su, H.G. Lee, W. Kudo, S.L. Siedlak, L. Zivković, B. Spremo-Potparević, N. Djelic, Z. Milicevic, A.K. Singh, L.M. Fahmy, X. Wang, M.A. Smith, and X. Zhu. 2011. Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer disease. Cell Mol Biol Lett 16(3): 359–372. doi:10.2478/s11658-011-0011-2.

  2. Behrendt, P., P. Arnold, M. Brueck, U. Rickert, R. Lucius, S. Hartmann, C. Klotz, and R. Lucius. 2016. A Helminth Protease Inhibitor Modulates the Lipopolysaccharide-Induced Proinflammatory Phenotype of Microglia in vitro. Neuroimmunomodulation 23(2): 109–121. doi:10.1159/000444756.

    Article  CAS  PubMed  Google Scholar 

  3. Drogat, J., V. Migeot, E. Mommaerts, C. Mullier, M. Dieu, H. van Bakel, and D. Hermand. 2012. Cdk11-cyclinL controls the assembly of the RNA polymerase II mediator complex. Cell Reports 2(5): 1068–1076. doi:10.1016/j.celrep.2012.09.027.

    Article  CAS  PubMed  Google Scholar 

  4. Erny, D., A.L. de Angelis, and M. Prinz. 2016. Communicating systems in the body: how microbiota and microglia cooperate. Immunology. doi:10.1111/imm.12645.

    PubMed  Google Scholar 

  5. Fidler, I.J. 2015. The Biology of Brain Metastasis: Challenges for Therapy. Cancer Journal 21(4): 284–293. doi:10.1097/PPO.0000000000000126.

    Article  CAS  Google Scholar 

  6. Gold, M., and J. El Khoury. 2015. Beta-amyloid, microglia, and the inflammasome in Alzheimer’s disease. Seminars in Immunopathology 37(6): 607–611. doi:10.1007/s00281-015-0518-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldmann, T., P. Wieghofer, P.F. Muller, Y. Wolf, D. Varol, S. Yona, S.M. Brendecke, K. Kierdorf, O. Staszewski, M. Datta, T. Luedde, M. Heikenwalder, S. Jung, and M. Prinz. 2013. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nature Neuroscience 16(11): 1618–1626. doi:10.1038/nn.3531.

    Article  CAS  PubMed  Google Scholar 

  8. Guo, S., Y. Liu, R. Ma, J. Li, and B. Su. 2016. Neuroprotective effect of endogenous cannabinoids on ischemic brain injury induced by the excess microglia-mediated inflammation. American Journal of Translational Research 8(6): 2631–2640.

    PubMed  PubMed Central  Google Scholar 

  9. Hilton, G.D., B.A. Stoica, K.R. Byrnes, and A.I. Faden. 2008. Roscovitine reduces neuronal loss, glial activation, and neurologic deficits after brain trauma. Journal of Cerebral Blood flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism 28(11): 1845–1859. doi:10.1038/jcbfm.2008.75.

    Article  CAS  Google Scholar 

  10. Joers, V., M.G. Tansey, G. Mulas, and A.R. Carta. 2016. Microglial phenotypes in Parkinson’s disease and animal models of the disease. Progress in Neurobiology. doi:10.1016/j.pneurobio.2016.04.006.

    PubMed  Google Scholar 

  11. Lee, Y.Y., E.J. Lee, J.S. Park, S.E. Jang, D.H. Kim, and H.S. Kim. 2016. Anti-Inflammatory and Antioxidant Mechanism of Tangeretin in Activated Microglia. Journal of Neuroimmune Pharmacology : The Official Journal of the Society on NeuroImmune Pharmacology 11(2): 294–305. doi:10.1007/s11481-016-9657-x.

    Article  Google Scholar 

  12. Lewis, D.K., A.B. Johnson, S. Stohlgren, A. Harms, and F. Sohrabji. 2008. Effects of estrogen receptor agonists on regulation of the inflammatory response in astrocytes from young adult and middle-aged female rats. Journal of Neuroimmunology 195(1–2): 47–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martini, A.C., T. Berta, S. Forner, G. Chen, A.F. Bento, R.R. Ji, and G.A. Rae. 2016. Lipoxin A4 inhibits microglial activation and reduces neuroinflammation and neuropathic pain after spinal cord hemisection. Journal of Neuroinflammation 13(1): 75. doi:10.1186/s12974-016-0540-8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Menet, V., M. Gimenez y Ribotta, N. Chauvet, M.J. Drian, J. Lannoy, E. Colucci-Guyon, and A. Privat. 2001. Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression. The Journal of Neuroscience 21(16): 6147–6158.

    CAS  PubMed  Google Scholar 

  15. Pastore N, Brady OA, Diab HI, Martina JA, Sun L, Huynh T, Lim JA, Zare H, Raben N, Ballabio A, Puertollano R. 2016. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 1–19. doi:10.1080/15548627.2016.1179405

  16. Petretti, C., M. Savoian, E. Montembault, D.M. Glover, C. Prigent, and R. Giet. 2006. The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Reports 7(4): 418–424. doi:10.1038/sj.embor.7400639.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tateda, S., H. Kanno, H. Ozawa, A. Sekiguchi, K. Yahata, S. Yamaya, and E. Itoi. 2016. Rapamycin suppresses microglial activation and reduces the development of neuropathic pain after spinal cord injury. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society. doi:10.1002/jor.23328.

    Google Scholar 

  18. Tsou, Y.C., H.H. Wang, C.C. Hsieh, K.H. Sun, G.H. Sun, R.S. Jhou, T.I. Lin, S.Y. Lu, H.Y. Liu, and S.J. Tang. 2016. Down-regulation of BNIP3 by olomoucine, a CDK inhibitor, reduces LPS- and NO-induced cell death in BV2 microglial cells. Neuroscience Letters 628: 186–193. doi:10.1016/j.neulet.2016.06.040.

    Article  CAS  PubMed  Google Scholar 

  19. Yuan, Y., M. Fang, C.Y. Wu, and E.A. Ling. 2016. Scutellarin as a Potential Therapeutic Agent for Microglia-Mediated Neuroinflammation in Cerebral Ischemia. Neuromolecular Medicine. doi:10.1007/s12017-016-8394-x.

    Google Scholar 

  20. Zhang, C., M. Zhang, Q. Wu, J. Peng, Y. Ruan, and J. Gu. 2015. Hepsin inhibits CDK11p58 I.E. activity by suppressing unr expression and eIF-2α phosphorylation in prostate cancer. Cellular Signalling 27(4): 789–797. doi:10.1016/j.cellsig.2014.12.020.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, S., M. Cai, S. Zhang, S. Xu, S. Chen, X. Chen, C. Chen, and J. Gu. 2002. Interaction of p58(PITSLRE), a G2/M-specific protein kinase, with cyclin D3. The Journal of Biological Chemistry 277(38): 35314–35322.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, Y., Y.J. Guo, X. Liu, and Y.W. Mei. 2009. Cell cycle inhibitor enhances the resolution of HSV-1-induced proinflammatory response in murine microglial cells. Neurological Research 31(9): 910–916. doi:10.1179/174313209X383222.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, Y., J.K. Shen, F.J. Hornicek, Q. Kan, and Z. Duan. 2016. The emerging roles and therapeutic potential of cyclin-dependent kinase 11 (CDK11) in human cancer. Oncotarget. doi:10.18632/oncotarget.8519.

    Google Scholar 

  24. Zong, H., Y. Chi, Y. Wang, Y. Yang, L. Zhang, H. Chen, J. Jiang, Z. Li, Y. Hong, H. Wang, X. Yun, and J. Gu. 2007. Cyclin D3/CDK11p58 complex is involved in the repression of androgen receptor. Molecular and Cellular Biology 27(20): 7125–7142. doi:10.1128/MCB.01753-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Chinese National Natural Science Foundation (Nos 81401124), Social Science and Technology Innovation and Demonstration Foundation of Nantong City (MS22015003); Preventive Medicine Projects from Bureau of Jiangsu Province (Y2012083);“Top Six Types of Talents” Financial Assistance of Jiangsu Province (Grant no. 10.WSN016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biyu Shen or Zhiming Cui.

Additional information

Biyu Shen and Tianyu Gu contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, B., Gu, T., Chen, H. et al. CDK11p58 Promotes Microglia Activation via Inducing Cyclin D3 Nuclear Localization. Inflammation 40, 636–644 (2017). https://doi.org/10.1007/s10753-017-0510-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0510-z

KEY WORDS

Navigation