Skip to main content

Advertisement

Log in

Macrophage Depletion Impairs Skeletal Muscle Regeneration: the Roles of Pro-fibrotic Factors, Inflammation, and Oxidative Stress

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Muscle contusion is one of the most common muscle injuries in sports medicine. Macrophages play complex roles in the regeneration of skeletal muscle. However, the roles of macrophages, especially the mechanisms involved, in the regeneration of muscle contusion are still not fully understood. We hypothesize that the depletion of macrophages impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may be involved in the process. To test these hypotheses, we constructed a muscle contusion injury and a macrophage depletion model and followed it up with morphological and gene expression analyses. The data showed that fibrotic scars were formed in the muscle of contusion injury, and they deteriorated in the mice of macrophage depletion. Furthermore, the sizes of regenerating myofibers were significantly reduced by macrophage depletion. Pro-fibrotic factors, inflammatory cytokines, chemokines, and oxidative stress-related enzymes increased significantly after muscle injury. Moreover, the expression of these factors was delayed by macrophage depletion. Most of them were still significantly higher in the later stage of regeneration. These results suggest that macrophage depletion impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may play important roles in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 8

Similar content being viewed by others

Abbreviations

GM:

Gastrocnemius muscle

CL-liposomes:

Clodronate-containing (CL) liposomes

HE staining:

Hematoxylin and eosin staining

PCR:

Polymerase chain reaction

TGF-beta 1:

Transforming growth factor-beta 1

TNF-alpha:

Tumor necrosis factor (TNF)-alpha

IL-1 beta:

Interleukin (IL)-1beta

IL-6:

Interleukin (IL)-6

IL-10:

Interleukin (IL)-10

CCL2:

CC ligand-2

CXCL10:

CXC ligand-10

NADPH-oxidases:

Nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases

ROS:

Reactive oxygen species

References

  1. Nozaki, M., Y. Li, J. Zhu, F. Ambrosio, K. Uehara, F.H. Fu, and J. Huard. 2008. Improved muscle healing after contusion injury by the inhibitory effect of suramin on myostatin, a negative regulator of muscle growth. The American Journal of Sports Medicine 36(12): 2354–2362.

    Article  PubMed  Google Scholar 

  2. Tidball, J.G., and S.A. Villalta. 2010. Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology 298(5): R1173–R1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Honda, H., H. Kimura, and A. Rostami. 1990. Demonstration and phenotypic characterization of resident macrophages in rat skeletal muscle. Immunology 70(2): 272–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hurme, T., H. Kalimo, M. Lehto, and M. Jarvinen. 1991. Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study. Medicine and Science in Sports and Exercise 23(7): 801–810.

    Article  CAS  PubMed  Google Scholar 

  5. Carlson, B.M., and J.A. Faulkner. 1983. The regeneration of skeletal muscle fibers following injury: a review. Medicine and Science in Sports and Exercise 15(3): 187–198.

    Article  CAS  PubMed  Google Scholar 

  6. Summan, M., G.L. Warren, R.R. Mercer, R. Chapman, T. Hulderman, N. Van Rooijen, and P.P. Simeonova. 2006. Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 290(6): R1488–R1495.

    Article  CAS  PubMed  Google Scholar 

  7. Bosurgi, L., A.A. Manfredi, and P. Rovere-Querini. 2011. Macrophages in injured skeletal muscle: a perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration. Frontiers in Immunology 2: 62.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kasemkijwattana, C., J. Menetrey, G. Somogyi, M.S. Moreland, F.H. Fu, B. Buranapanitkit, S.C. Watkins, and J. Huard. 1998. Development of approaches to improve the healing following muscle contusion. Cell Transplantation 7(6): 585–598.

    Article  CAS  PubMed  Google Scholar 

  9. Wright-Carpenter, T., P. Opolon, H. Appell, H. Meijer, P. Wehling, and L. Mir. 2004. Treatment of muscle injuries by local administration of autologous conditioned serum: animal experiments using a muscle contusion model. International Journal of Sports Medicine 25(8): 582–587.

    Article  CAS  PubMed  Google Scholar 

  10. Xiao, W.H., Y. Liu, B.B. Luo, L.L. Zhao, X.G. Liu, Z.G. Zeng, and P.J. Chen. 2016. Time-dependent gene expression analysis after mouse skeletal muscle contusion. Journal of Sport and Health Science 5(1): 101–108.

    Article  Google Scholar 

  11. Fisher, B.D., V.E. Baracos, T.K. Shnitka, S.W. Mendryk, and D.C. Reid. 1990. Ultrastructural events following acute muscle trauma. Medicine and Science in Sports and Exercise 22(2): 185–193.

    CAS  PubMed  Google Scholar 

  12. Crisco, J.J., P. Jokl, G.T. Heinen, M.D. Connell, and M.M. Panjabi. 1994. A muscle contusion injury model biomechanics, physiology, and histology. The American Journal of Sports Medicine 22(5): 702–710.

    Article  CAS  PubMed  Google Scholar 

  13. Diaz, J.A., D.A. Fischer, A.C. Rettig, T.J. Davis, and K.D. Shelbourne. 2003. Severe quadriceps muscle contusions in athletes. A report of three cases. The American Journal of Sports Medicine 31(2): 289–293.

    PubMed  Google Scholar 

  14. Dobek, G.L., N.D. Fulkerson, J. Nicholas, and B.S. Schneider. 2013. Mouse model of muscle crush injury of the legs. Comparative Medicine 63(3): 227–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tyner, J.W., O. Uchida, N. Kajiwara, E.Y. Kim, A.C. Patel, M.P. O’Sullivan, M.J. Walter, R.A. Schwendener, D.N. Cook, T.M. Danoff, et al. 2005. CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nature Medicine 11(11): 1180–1187.

    Article  CAS  PubMed  Google Scholar 

  16. Popovich, P.G., Z. Guan, P. Wei, I. Huitinga, N. van Rooijen, and B.T. Stokes. 1999. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Experimental Neurology 158(2): 351–365.

    Article  CAS  PubMed  Google Scholar 

  17. Bacci, M., A. Capobianco, A. Monno, L. Cottone, F. Di Puppo, B. Camisa, M. Mariani, C. Brignole, M. Ponzoni, S. Ferrari, et al. 2009. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. The American Journal of Pathology 175(2): 547–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holt, M.P., L. Cheng, and C. Ju. 2008. Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury. Journal of Leukocyte Biology 84(6): 1410–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen, W., Y. Li, J. Zhu, R. Schwendener, and J. Huard. 2008. Interaction between macrophages, TGF-beta1, and the COX-2 pathway during the inflammatory phase of skeletal muscle healing after injury. Journal of Cellular Physiology 214(2): 405–412.

    Article  CAS  PubMed  Google Scholar 

  20. Foster, W., Y. Li, A. Usas, G. Somogyi, and J. Huard. 2003. Gamma interferon as an antifibrosis agent in skeletal muscle. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 21(5): 798–804.

    Article  CAS  Google Scholar 

  21. Fukushima, K., N. Badlani, A. Usas, F. Riano, F. Fu, and J. Huard. 2001. The use of an antifibrosis agent to improve muscle recovery after laceration. The American Journal of Sports Medicine 29(4): 394–402.

    CAS  PubMed  Google Scholar 

  22. Chirgwin, J.M., A.E. Przybyla, R.J. MacDonald, and W.J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18(24): 5294–5299.

    Article  CAS  PubMed  Google Scholar 

  23. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4): 402–408.

    Article  CAS  PubMed  Google Scholar 

  24. Villalta, S.A., C. Rinaldi, B. Deng, G. Liu, B. Fedor, and J.G. Tidball. 2011. Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Human Molecular Genetics 20(4): 790–805.

    Article  CAS  PubMed  Google Scholar 

  25. Mann, C.J., E. Perdiguero, Y. Kharraz, S. Aguilar, P. Pessina, A.L. Serrano, and P. Munoz-Canoves. 2011. Aberrant repair and fibrosis development in skeletal muscle. Skeletal Muscle 1(1): 21.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li, Z.B., H.D. Kollias, and K.R. Wagner. 2008. Myostatin directly regulates skeletal muscle fibrosis. The Journal of Biological Chemistry 283(28): 19371–19378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan, E.C., F. Jiang, H.M. Peshavariya, and G.J. Dusting. 2009. Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacology & Therapeutics 122(2): 97–108.

    Article  CAS  Google Scholar 

  28. Cabello-Verrugio, C., M.J. Acuna, M.G. Morales, A. Becerra, F. Simon, and E. Brandan. 2011. Fibrotic response induced by angiotensin-II requires NAD(P)H oxidase-induced reactive oxygen species (ROS) in skeletal muscle cells. Biochemical and Biophysical Research Communications 410(3): 665–670.

    Article  CAS  PubMed  Google Scholar 

  29. Nishimura, S., I. Manabe, M. Nagasaki, K. Eto, H. Yamashita, M. Ohsugi, M. Otsu, K. Hara, K. Ueki, S. Sugiura, et al. 2009. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Medicine 15(8): 914–920.

    Article  CAS  PubMed  Google Scholar 

  30. Stoneman, V., D. Braganza, N. Figg, J. Mercer, R. Lang, M. Goddard, and M. Bennett. 2007. Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circulation Research 100(6): 884–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao, W., P. Chen, and J. Dong. 2012. Effects of overtraining on skeletal muscle growth and gene expression. International Journal of Sports Medicine 33(10): 846–853.

    Article  CAS  PubMed  Google Scholar 

  32. Chan, Y.S., Y. Li, W. Foster, T. Horaguchi, G. Somogyi, F.H. Fu, and J. Huard. 2003. Antifibrotic effects of suramin in injured skeletal muscle after laceration. Journal of Applied Physiology 95(2): 771–780.

    Article  CAS  PubMed  Google Scholar 

  33. Segawa, M., S. Fukada, Y. Yamamoto, H. Yahagi, M. Kanematsu, M. Sato, T. Ito, A. Uezumi, S. Hayashi, Y. Miyagoe-Suzuki, et al. 2008. Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Experimental Cell Research 314(17): 3232–3244.

    Article  CAS  PubMed  Google Scholar 

  34. Uezumi, A., T. Ito, D. Morikawa, N. Shimizu, T. Yoneda, M. Segawa, M. Yamaguchi, R. Ogawa, M.M. Matev, Y. Miyagoe-Suzuki, et al. 2011. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. Journal of Cell Science 124(Pt 21): 3654–3664.

    Article  CAS  PubMed  Google Scholar 

  35. Li, Y., W. Foster, B.M. Deasy, Y. Chan, V. Prisk, Y. Tang, J. Cummins, and J. Huard. 2004. Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. The American Journal of Pathology 164(3): 1007–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, Y., and J. Huard. 2002. Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. The American Journal of Pathology 161(3): 895–907.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhu, J., Y. Li, W. Shen, C. Qiao, F. Ambrosio, M. Lavasani, M. Nozaki, M.F. Branca, and J. Huard. 2007. Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. The Journal of Biological Chemistry 282(35): 25852–25863.

    Article  CAS  PubMed  Google Scholar 

  38. Urso, M.L. 2013. Anti-inflammatory interventions and skeletal muscle injury: benefit or detriment? Journal of Applied Physiology 115(6): 920–928.

    Article  CAS  PubMed  Google Scholar 

  39. Meyer, G.A., and R.L. Lieber. 2012. Skeletal muscle fibrosis develops in response to desmin deletion. American Journal of Physiology. Cell Physiology 302(11): C1609–C1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ermolova, N.V., L. Martinez, S.A. Vetrone, M.C. Jordan, K.P. Roos, H.L. Sweeney, and M.J. Spencer. 2014. Long-term administration of the TNF blocking drug Remicade (cV1q) to mdx mice reduces skeletal and cardiac muscle fibrosis, but negatively impacts cardiac function. Neuromuscular Disorders 24(7): 583–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abdelmagid, S.M., A.E. Barr, M. Rico, M. Amin, J. Litvin, S.N. Popoff, F.F. Safadi, and M.F. Barbe. 2012. Performance of repetitive tasks induces decreased grip strength and increased fibrogenic proteins in skeletal muscle: role of force and inflammation. PLoS One 7(5): e38359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ghaly, A., and D.R. Marsh. 2010. Ischaemia-reperfusion modulates inflammation and fibrosis of skeletal muscle after contusion injury. International Journal of Experimental Pathology 91(3): 244–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao, W., P. Chen, R. Wang, and J. Dong. 2013. Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF. European Journal of Applied Physiology 113(1): 117–125.

    Article  CAS  PubMed  Google Scholar 

  44. Xiao, W., P. Chen, J. Dong, R. Wang, and B. Luo. 2014. Dietary Glutamine Supplementation Partly Reverses Impaired Macrophage Function Resulting From Overload Training in Rats. International Journal of Sport Nutrition and Exercise 25(2): 179–187.

    Article  Google Scholar 

  45. Wynn, T.A., and L. Barron. 2010. Macrophages: master regulators of inflammation and fibrosis. Seminars in Liver Disease 30(3): 245–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Long, K.K., M. Montano, and G.K. Pavlath. 2011. Sca-1 is negatively regulated by TGF-beta1 in myogenic cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 25(4): 1156–1165.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (31271273, 31300975), the Doctoral Fund of Ministry of Education of China (20133156120004) and the Key Lab of Exercise and Health Sciences of Ministry of Education (Shanghai University of Sport).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihua Xiao or Peijie Chen.

Ethics declarations

Authors’ Contributions

WX and PC analyzed and interpreted the data. YL performed the histological examination of the skeletal muscle. All authors read and approved the final manuscript.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Liu, Y. & Chen, P. Macrophage Depletion Impairs Skeletal Muscle Regeneration: the Roles of Pro-fibrotic Factors, Inflammation, and Oxidative Stress. Inflammation 39, 2016–2028 (2016). https://doi.org/10.1007/s10753-016-0438-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0438-8

KEY WORDS

Navigation