Skip to main content

Advertisement

Log in

miR-146a-5p Antagonized AGEs- and P.g-LPS-Induced ABCA1 and ABCG1 Dysregulation in Macrophages via IRAK-1 Downregulation

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The miR-146-mediated IL-1 receptor-associated kinase 1 (IRAK-1) feedback circuit has been shown to inhibit inflammatory response in macrophages against lipopolysaccharide (LPS). The aim of this study is to compare the antagonized effects of miR-146a-5p on Porphyromonas gingivalis (P.g) lipolysaccharide (LPS)- and advanced glycation end products (AGEs)-triggered ABCA1 and ABCG1 dysregulation and explore the underlying mechanism. THP-1-derived macrophages transfected with miRNA mimics or not were treated with P.g LPS or AGE-BSA, respectively. The mechanism of endotoxin tolerance was mimicked. miR-146a-5p levels and protein levels of IRAK-1, LXRα/β, ABCA1, and ABCG1 were detected by stem–loop reverse transcription followed by TaqMan PCR analysis and Western blotting. Our results showed that miR-146a-5p levels were significantly increased in macrophages after 24 h of stimulation with high dose of P.g LPS or AGE-BSA. Macrophages transfected with miR-146a-5p mimics attenuated the dysregulation of ABCA1/G1 induced by P.g LPS and AGEs through IRAK-1 downregulation. In low-dose LPS-tolerized cells, elevated miR-146a-5p antagonized the increase of ABCA1, ABCG1, and IRAK-1. However, low-dose AGE-BSA did not increase miR-146a-5p levels. In conclusion, the model of endotoxin tolerance is suitable for the antagonistic effects on the dysregulation of ABCA1/G1 induced by high dose of P.g LPS. Conversely, low-dose AGEs did not induce the model of P.g LPS-mediated tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bolego, C., A. Cignarella, B. Staels, and G. Chinetti-Gbaguidi. 2013. Macrophage function and polarization in cardiovascular disease: a role of estrogen signaling? Arteriosclerosis, Thrombosis, and Vascular Biology 33: 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  2. Shapiro, H., A. Lutaty, and A. Ariel. 2011. Macrophages, meta-inflammation, and immuno-metabolism. The Scientific World Journal 11: 2509–2529.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Wynn, T.A., A. Chawla, and J.W. Pollard. 2013. Macrophage biology in development, homeostasis and disease. Nature 496: 445–455.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kzhyshkowska, J., C. Neyen, and S. Gordon. 2012. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology 217: 492–502.

    Article  CAS  PubMed  Google Scholar 

  5. Lundberg, A.M., and G.K. Hansson. 2010. Innate immune signals in atherosclerosis. Clinical Immunology 134: 5–24.

    Article  CAS  PubMed  Google Scholar 

  6. Goldin, A., J.A. Beckman, A.M. Schmidt, and M.A. Creager. 2006. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114: 597–605.

    Article  CAS  PubMed  Google Scholar 

  7. Liu, H.Q., X.Y. Zhang, K. Edfeldt, M.O. Nijhuis, H. Idborg, M. Bäck, J. Roy, U. Hedin, P.-J. Jakobsson, J.D. Laman, D.P. de Kleijn, G. Pasterkamp, G.K. Hansson, and Z.Q. Yan. 2013. NOD2-mediated innate immune signaling regulates the eicosanoids in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 33: 2193–2201.

    Article  CAS  PubMed  Google Scholar 

  8. Cao, F., A. Castrillo, P. Tontonoz, F. Re, and G.I. Byrne. 2007. Chlamydia pneumoniae-induced macrophage foam cell formation is mediated by toll-like receptor 2. Infection and Immunity 75: 753–759.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zheng, F., S. Xing, Z. Gong, W. Mu, and Q. Xing. 2014. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediators of Inflammation 2014: 8.

    Google Scholar 

  10. Fedele, S., W. Sabbah, N. Donos, S. Porter, and F. D’Aiuto. 2011. Common oral mucosal diseases, systemic inflammation, and cardiovascular diseases in a large cross-sectional US survey. American Heart Journal 161: 344–350.

    Article  PubMed  Google Scholar 

  11. Southerland, J.H., K. Moss, G.W. Taylor, J.D. Beck, J. Pankow, P.R. Gangula, and S. Offenbacher. 2012. Periodontitis and diabetes associations with measures of atherosclerosis and CHD. Atherosclerosis 222: 196–201.

    Article  CAS  PubMed  Google Scholar 

  12. Buhlin, K., P. Mäntylä, S. Paju, J.S. Peltola, M.S. Nieminen, J. Sinisalo, and P.J. Pussinen. 2011. Periodontitis is associated with angiographically verified coronary artery disease. Journal of Clinical Periodontology 38: 1007–1014.

    Article  PubMed  Google Scholar 

  13. Zhang, D., L. Chen, S. Li, G. Zhiyuan, and J. Yan. 2008. Lipopolysaccharide (LPS) of porphyromonas gingivalis induces IL-1β, TNF-α and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immunity 14: 99–107.

    Article  Google Scholar 

  14. Liu, J., S. Zhao, J. Tang, Z. Li, T. Zhong, Y. Liu, D. Chen, M. Zhao, Y. Li, X. Gong, P. Deng, J.H. Wang, and Y. Jiang. 2009. Advanced glycation end products and lipopolysaccharide synergistically stimulate proinflammatory cytokine/chemokine production in endothelial cells via activation of both mitogen-activated protein kinases and nuclear factor-κB. FEBS Journal 276: 4598–4606.

    Article  CAS  PubMed  Google Scholar 

  15. Isoda, K., E.J. Folco, K. Shimizu, and P. Libby. 2007. AGE-BSA decreases ABCG1 expression and reduces macrophage cholesterol efflux to HDL. Atherosclerosis 192: 298–304.

    Article  CAS  PubMed  Google Scholar 

  16. Passarelli, M., C. Tang, T.O. McDonald, K.D. O’Brien, R.G. Gerrity, J.W. Heinecke, and J.F. Oram. 2005. Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes 54: 2198–2205.

    Article  CAS  PubMed  Google Scholar 

  17. Veloso, C.A., J.S. Fernandes, C.M. Volpe, F.S. Fagundes-Netto, J.S. Reis, M.M. Chaves, and J.A. Nogueira-Machado. 2011. TLR4 and RAGE: similar routes leading to inflammation in type 2 diabetic patients. Diabetes & Metabolism 336–342.

  18. Lin, L. 2006. RAGE on the Toll Road? Cell Molecular Immunology 3: 351–358.

    CAS  Google Scholar 

  19. Ibrahim, Z.A., C.L. Armour, S. Phipps, and M.B. Sukkar. 2013. RAGE and TLRs: relatives, friends or neighbours? Molecular Immunology 56: 739–744.

    Article  CAS  PubMed  Google Scholar 

  20. Monaco, C., and E. Paleolog. 2004. Nuclear factor κB: a potential therapeutic target in atherosclerosis and thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology 61: 671–682.

    CAS  Google Scholar 

  21. Lu, Z., X. Zhang, Y. Li, J. Jin, and Y. Huang. 2013. TLR4 antagonist reduces early-stage atherosclerosis in diabetic apolipoprotein E-deficient mice. Journal of Endocrinology 216: 61–71.

    Article  CAS  PubMed  Google Scholar 

  22. Boldin, M.P., K.D. Taganov, D.S. Rao, L. Yang, J.L. Zhao, M. Kalwani, Y. Garcia-Flores, M. Luong, A. Devrekanli, and J. Xu. 2011. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. The Journal of Experimental Medicine 208: 1189–1201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Villarreal, A., R.X. Aviles Reyes, M.F. Angelo, A.G. Reines, and A.J. Ramos. 2011. S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-κB signaling. Journal of Neurochemistry 117: 321–332.

    Article  CAS  PubMed  Google Scholar 

  24. Daigneault, M., J.A. Preston, H.M. Marriott, M.K.B. Whyte, and D.H. Dockrell. 2010. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE 5: e8668.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Nahid, M.A., K.M. Pauley, M. Satoh, and E.K.L. Chan. 2009. miR-146a is critical for endotoxin-induced tolerance. Journal of Biological Chemistry 284: 34590.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Taganov, K.D., M.P. Boldin, K.J. Chang, and D. Baltimore. 2006. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences 103: 12481–12486.

    Article  CAS  Google Scholar 

  27. Park, D.W., H.K. Lee, J.H. Lyu, H. Chin, S.W. Kang, Y.J. Kim, Y.S. Bae, and S.H. Baek. 2013. TLR2 stimulates ABCA1 expression via PKC-η and PLD2 pathway. Biochemical and Biophysical Research Communications 430: 933–937.

    Article  CAS  PubMed  Google Scholar 

  28. Oerlemans, M.I.F.J., A. Mosterd, M.S. Dekker, E.A. de Vrey, A. van Mil, G. Pasterkamp, P.A. Doevendans, A.W. Hoes, and J.P.G. Sluijter. 2012. Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Molecular Medicine 4: 1176–1185.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Guo, M., X. Mao, Q. Ji, M. Lang, S. Li, Y. Peng, W. Zhou, B. Xiong, and Q. Zeng. 2010. miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome. Immunology and Cell Biology 88: 555–564.

    Article  CAS  PubMed  Google Scholar 

  30. Nicole, R., and M. Silvia. 2011. MiR-146a in immunity and disease. Molecular Biology International 2011: 437301.

    Google Scholar 

  31. Bhaumik, D., G. Scott, S. Schokrpur, C. Patil, A. Orjalo, F. Rodier, G. Lithgow, and J. Campisi. 2009. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY) 1: 402–411.

    CAS  Google Scholar 

  32. Meisgen, F., N.X. Landen, A. Wang, B. Rethi, C. Bouez, M. Zuccolo, A. Gueniche, M. Stahle, E. Sonkoly, L. Breton, and A. Pivarcsi. 2014. MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes. Journal of Investigative Dermatology 134: 1931–1940.

    Article  CAS  PubMed  Google Scholar 

  33. Saba, R., S. Gushue, R.L.C.H. Huzarewich, K. Manguiat, S. Medina, C. Robertson, and S.A. Booth. 2012. MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS ONE 7: e30832.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Conze, D.B., C.-J. Wu, J.A. Thomas, A. Landstrom, and J.D. Ashwell. 2008. Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-κB activation. Molecular and Cellular Biology 28: 3538–3547.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Deng, C., C. Radu, A. Diab, M.F. Tsen, R. Hussain, J.S. Cowdery, M.K. Racke, and J.A. Thomas. 2003. IL-1 receptor-associated kinase 1 regulates susceptibility to organ-specific autoimmunity. The Journal of Immunology 170: 2833–2842.

    Article  CAS  PubMed  Google Scholar 

  36. Lakoski, S.G., L. Li, C.D. Langefeld, Y. Liu, T.D. Howard, K.B. Brosnihan, J. Xu, D.W. Bowden, and D.M. Herrington. 2007. The association between innate immunity gene (IRAK1) and C-reactive protein in the Diabetes Heart Study. Experimental and Molecular Pathology 82: 280–283.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Maitra, U., J.S. Parks, and L. Li. 2009. An innate immunity signaling process suppresses macrophage ABCA1 expression through IRAK-1-mediated downregulation of retinoic acid receptor α and NFATc2. Molecular and Cellular Biology 29: 5989–5997.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Zhu, P., M. Ren, C. Yang, Y.-X. Hu, J.-M. Ran, and L. Yan. 2012. Involvement of RAGE, MAPK and NF-κB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes. Experimental Dermatology 21: 123–129.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, Y., C. Liang, X. Liu, B. Liao, X. Pan, Y. Ren, M. Fan, M. Li, Z. He, J. Wu, and Z. Wu. 2010. AGEs increased migration and inflammatory responses of adventitial fibroblasts via RAGE, MAPK and NF-κB pathways. Atherosclerosis 208: 34–42.

    Article  CAS  PubMed  Google Scholar 

  40. Ramasamy, R., S.F. Yan, and A.M. Schmidt. 2009. RAGE: therapeutic target and biomarker of the inflammatory response—the evidence mounts. Journal of Leukocyte Biology 86: 505–512.

    Article  CAS  PubMed  Google Scholar 

  41. Ishibashi, Y., T. Matsui, M. Takeuchi, and S. Yamagishi. 2011. Rosuvastatin blocks advanced glycation end products-elicited reduction of macrophage cholesterol efflux by suppressing NADPH oxidase activity via inhibition of geranylgeranylation of Rac-1. Hormone and Metabolic Research 43: 619–624.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Medical Research Foundation of the Health Planning Commission of Hebei Province of China (No. 20130315) and the Scientific Research Program for Returned Scholars, Department of Human Resources and Social Security of Hebei Province of China.

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Tao Zhou or Xiao-Ming Shang.

Additional information

Zheng Ji holds a MD, Tangshan Gongren Hospital.

Wei Tian holds a PhD, Tangshan Gongren Hospital.

Yun-Tao Zhou holds a PhD, Tangshan Gongren Hospital.

Xiao-Ming Shang holds a MD, Hebei Medical University, Tangshan Gongren Hospital affiliated to Hebei Medical University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ji, Z., Li, S. et al. miR-146a-5p Antagonized AGEs- and P.g-LPS-Induced ABCA1 and ABCG1 Dysregulation in Macrophages via IRAK-1 Downregulation. Inflammation 38, 1761–1768 (2015). https://doi.org/10.1007/s10753-015-0153-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0153-x

KEY WORDS

Navigation