Skip to main content
Log in

Downhill Exercise-Induced Changes in Gene Expression Related with Macrophage Polarization and Myogenic Cells in the Triceps Long Head of Rats

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Macrophages are one of the most heterogenic immune cells involved in skeletal muscle regeneration. After skeletal muscle damage, M1 phenotypes exhibit pro-inflammatory reaction. In a later stage, they are converted to M2 phenotypes with anti-inflammatory properties. To study when gene expressions of macrophage polarization are changed after damage induced by downhill exercise to exhaustion is the objective of this paper. Before (CTRL) and 0 h (G0), 24 h (G24), 48 h (G48) and 72 h (G72) after 18 bouts of downhill exercise, the animals were euthanised, and the triceps were dissected. We measured gene expression of macrophages (CD68 and CD163), myogenic cells (MyoD and myogenin) and quantified cytokine secretion (interleukin (IL)-6, IL-10 and tumour necrosis factor alpha (TNF-α)). The CD68 expression was lower in G72 compared with G24 (P = 0.005) while CD163 was higher in G48 compared with G24 (P = 0.04). The MyoD expression was higher in G72 compared with G0 (P = 0.04). The myogenin expression was lower in G24 compared with CTRL (P = 0.01) and restored in G72 compared with G24 (P = 0.007). The TNF-α was significantly higher at all times after 24 h (all compared with CTRL, with P = 0.03). The CD68 and CD163 expressions behaved distinctly after exercise, which indicates macrophage polarization between 24 and 48 h. The distinct expression of myogenin, concomitantly with MyoD elevation in G72, indicates that myogenic cell differentiation and the significant change of TNF-α level show an important role of this cytokine in these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lu, H., D. Huang, R.M. Ransohoff, and L. Zhou. 2011. Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair. FASEB Journal 25: 3344–3355.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lu, H., D. Huang, N. Saederup, I.F. Charo, R.M. Ransohoff, and L. Zhou. 2010. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB Journal 25: 358–369.

    Article  PubMed  Google Scholar 

  3. Martinez, C.O., M.J. McHale, J.T. Wells, O. Ochoa, J.E. Michalek, L.M. McManus, and P.K. Shireman. 2010. Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 299: R832–R842.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Deng, B., M. Wehling-Henricks, S.A. Villalta, Y. Wang, and J.G. Tidball. 2012. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. Journal of Immunology 189: 3669–3680.

    Article  CAS  Google Scholar 

  5. Woods, J., Q. Lu, M.A. Ceddia, and T. Lowder. 2000. Special feature for the Olympics: Effects of exercise on the immune system: Exercise-induced modulation of macrophage function. Immunology and Cell Biology 78: 545–553.

    Article  CAS  PubMed  Google Scholar 

  6. Chazaud, B., C. Sonnet, P. Lafuste, G. Bassez, A.C. Rimaniol, F. Poron, F.J. Authier, P.A. Dreyfus, and R.K. Gherardi. 2003. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. Journal of Cell Biology 163: 1133–1143.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R.K. Gherardi, and B. Chazaud. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. Journal of Experimental Medicine 204: 1057–1069.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chazaud, B., M. Brigitte, H. Yacoub-Youssef, L. Arnold, R. Gherardi, C. Sonnet, P. Lafuste, and F. Chretien. 2009. Dual and beneficial roles of macrophages during skeletal muscle regeneration. Exercise and Sport Sciences Reviews 37: 18–22.

    Article  PubMed  Google Scholar 

  9. Saclier, M., S. Cuvellier, M. Magnan, R. Mounier, and B. Chazaud. 2013. Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration. FEBS Journal 280: 4118–4130.

    Article  CAS  PubMed  Google Scholar 

  10. Saclier, M., H. Yacoub-Youssef, A.L. Mackey, L. Arnold, H. Ardjoune, M. Magnan, F. Sailhan, J. Chelly, G.K. Pavlath, R. Mounier, et al. 2012. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells 31: 384–396.

    Article  Google Scholar 

  11. Tsivitse, S.K., T.J. McLoughlin, J.M. Peterson, E. Mylona, S.J. McGregor, and F.X. Pizza. 2003. Downhill running in rats: Influence on neutrophils, macrophages, and MyoD+ cells in skeletal muscle. European Journal of Applied Physiology 90: 633–638.

    Article  PubMed  Google Scholar 

  12. Lapointe, B.M., J. Frenette, and C.H. Cote. 2002. Lengthening contraction-induced inflammation is linked to secondary damage but devoid of neutrophil invasion. Journal of Applied Physiology 92: 1995–2004.

    Article  PubMed  Google Scholar 

  13. Tidball, J.G., and S.A. Villalta. 2010. Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 298: R1173–R1187.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Martinez, F.O., A. Sica, A. Mantovani, and M. Locati. 2008. Macrophage activation and polarization. Frontiers in Bioscience 13: 453–461.

    Article  CAS  PubMed  Google Scholar 

  15. Gordon, S., and A. Mantovani. 2011. Diversity and plasticity of mononuclear phagocytes. European Journal of Immunology 41: 2470–2472.

    Article  CAS  PubMed  Google Scholar 

  16. Villalta, S.A., H.X. Nguyen, B. Deng, T. Gotoh, and J.G. Tidball. 2009. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Human Molecular Genetics 18: 482–496.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Massimino, M.L., E. Rapizzi, M. Cantini, L.D. Libera, F. Mazzoleni, P. Arslan, and U. Carraro. 1997. ED2+ macrophages increase selectively myoblast proliferation in muscle cultures. Biochemical and Biophysical Research Communications 235: 754–759.

    Article  CAS  PubMed  Google Scholar 

  18. Paulsen, G., U.R. Mikkelsen, T. Raastad, and J.M. Peake. 2012. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exercise Immunology Review 18: 42–97.

    PubMed  Google Scholar 

  19. Peake, J., K. Nosaka, and K. Suzuki. 2005. Characterization of inflammatory responses to eccentric exercise in humans. Exercise Immunology Review 11: 64–85.

    PubMed  Google Scholar 

  20. Armstrong, R.B., R.W. Ogilvie, and J.A. Schwane. 1983. Eccentric exercise-induced injury to rat skeletal muscle. Journal of Applied Physiology 54: 80–93.

    CAS  PubMed  Google Scholar 

  21. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  22. Takekura, H., N. Fujinami, T. Nishizawa, H. Ogasawara, and N. Kasuga. 2001. Eccentric exercise-induced morphological changes in the membrane systems involved in excitation-contraction coupling in rat skeletal muscle. Journal of Physiology 533: 571–583.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gordon, P.M., D. Liu, M.A. Sartor, H.B. IglayReger, E.E. Pistilli, L. Gutmann, G.A. Nader, and E.P. Hoffman. 2011. Resistance exercise training influences skeletal muscle immune activation: a microarray analysis. Journal of Applied Physiology 112: 443–453.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Fuentes, I., A.R. Cobos, and L.A. Segade. 1998. Muscle fibre types and their distribution in the biceps and triceps brachii of the rat and rabbit. Journal of Anatomy 192(Pt 2): 203–210.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Schumann, N.P., F.H. Biedermann, B.U. Kleine, D.F. Stegeman, K. Roeleveld, R. Hackert, and H. Scholle. 2002. Multi-channel EMG of the M. triceps brachii in rats during treadmill locomotion. Clinical Neurophysiology 113: 1142–1151.

    Article  PubMed  Google Scholar 

  26. Armstrong, R.B., R.W. Ogilvie, and J.A. Schwane. 1983. Eccentric exercise-induced injury to rat skeletal muscle. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 54: 80–93.

    CAS  Google Scholar 

  27. Touchberry, C.D., A.A. Gupte, G.L. Bomhoff, Z.A. Graham, P.C. Geiger, and P.M. Gallagher. 2012. Acute heat stress prior to downhill running may enhance skeletal muscle remodeling. Cell Stress & Chaperones 17: 693–705.

    Article  CAS  Google Scholar 

  28. Liao, P., J. Zhou, L.L. Ji, and Y. Zhang. 2009. Eccentric contraction induces inflammatory responses in rat skeletal muscle: role of tumor necrosis factor-alpha. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 298: R599–R607.

    Article  PubMed  Google Scholar 

  29. Cote C.H., P. Bouchard, N. Rooijen van, D. Marsolais, E. Duchesne. Monocyte depletion increases local proliferation of macrophage subsets after skeletal muscle injury. BMC Musculoskeletal Disorders, 14:359. doi:10.1186/1471-2474-14-359

  30. Armstrong, R.B., and C.R. Taylor. 1993. Glycogen loss in rat muscles during locomotion on different inclines. Journal of Experimental Biology 176: 135–144.

    CAS  PubMed  Google Scholar 

  31. McLennan, I.S. 1993. Resident macrophages (ED2- and ED3-positive) do not phagocytose degenerating rat skeletal muscle fibres. Cell and Tissue Research 272(1):193–196.

  32. Gordon, S. 2003. Alternative activation of macrophages. Nature Reviews Immunology 3: 23–35.

    Article  CAS  PubMed  Google Scholar 

  33. Mantovani, A., B. Bottazzi, F. Colotta, S. Sozzani, and L. Ruco. 1992. The origin and function of tumor-associated macrophages. Immunology Today 13: 265–270.

    Article  CAS  PubMed  Google Scholar 

  34. Onofre, G., M. Kolackova, K. Jankovicova, and J. Krejsek. 2009. Scavenger receptor CD163 and its biological functions. Acta Medica (Hradec Králové) 52: 57–61.

    CAS  Google Scholar 

  35. Berkes, C.A., and S.J. Tapscott. 2005. MyoD and the transcriptional control of myogenesis. Seminars in Cell and Developmental Biology 16: 585–595.

    Article  CAS  PubMed  Google Scholar 

  36. Drummond, M.J., R.K. Conlee, G.W. Mack, S. Sudweeks, G.B. Schaalje, and A.C. Parcell. 2010. Myogenic regulatory factor response to resistance exercise volume in skeletal muscle. European Journal of Applied Physiology 108: 771–778.

    Article  PubMed  Google Scholar 

  37. Hentzen, E.R., M. Lahey, D. Peters, L. Mathew, I.A. Barash, J. Friden, and R.L. Lieber. 2006. Stress-dependent and -independent expression of the myogenic regulatory factors and the MARP genes after eccentric contractions in rats. Journal of Physiology 570: 157–167.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sakurai, T., O. Kashimura, Y. Kano, H. Ohno, L.L. Ji, T. Izawa, and T.M. Best. 2013. Role of nitric oxide in muscle regeneration following eccentric muscle contractions in rat skeletal muscle. Journal of Physiological Sciences 63: 263–270.

    Article  CAS  PubMed  Google Scholar 

  39. Le Grand, F., and M.A. Rudnicki. 2007. Skeletal muscle satellite cells and adult myogenesis. Current Opinion in Cell Biology 19: 628–633.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Kono Y., S. Kawakami, Y. Higuchi, F. Yamashita, M. Hashida. 2013. In vitro evaluation of inhibitory effect of nuclear factor-KappaB activity by small interfering RNA on Pro-tumor characteristics of M2-like macrophages. Biological & Pharmaceutical Bulletin 37(1):137–144.

  41. Novak, M.L., and T.J. Koh. 2013. Phenotypic transitions of macrophages orchestrate tissue repair. American Journal of Pathology 183: 1352–1363.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Li, Y.P. 2003. TNF-alpha is a mitogen in skeletal muscle. American Journal of Physiology - Cellular Physiology 285: C370–C376.

    Article  CAS  Google Scholar 

  43. Langen, R.C., A.M. Schols, M.C. Kelders, E.F. Wouters, and Y.M. Janssen-Heininger. 2001. Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. FASEB Journal 15: 1169–1180.

    Article  CAS  PubMed  Google Scholar 

  44. Bakkar, N., J. Wang, K.J. Ladner, H. Wang, J.M. Dahlman, M. Carathers, S. Acharyya, M.A. Rudnicki, A.D. Hollenbach, and D.C. Guttridge. 2008. IKK/NF-kappaB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis. Journal of Cell Biology 180: 787–802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Chen, S.E., B. Jin, and Y.P. Li. 2007. TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. American Journal of Physiology - Cellular Physiology 292: C1660–C1671.

    Article  CAS  Google Scholar 

  46. Bakkar, N., K. Ladner, B.D. Canan, S. Liyanarachchi, N.C. Bal, M. Pant, M. Periasamy, Q. Li, P.M. Janssen, and D.C. Guttridge. 2012. IKKalpha and alternative NF-kappaB regulate PGC-1beta to promote oxidative muscle metabolism. Journal of Cell Biology 196: 497–511.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Porcheray, F., S. Viaud, A.C. Rimaniol, C. Leone, B. Samah, N. Dereuddre-Bosquet, D. Dormont, and G. Gras. 2005. Macrophage activation switching: an asset for the resolution of inflammation. Clinical and Experimental Immunology 142: 481–489.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All authors are grateful to Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), 2011/10917-3, Universidade Federal de São Paulo (UNIFESP-BS), Centro de Estudos em Psicobiologia e Exercício (CEPE) and the Laboratório de fisiologia da nutrição (UNIFESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Vagner Thomatieli dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minari, A.L.A., Oyama, L.M. & dos Santos, R.V.T. Downhill Exercise-Induced Changes in Gene Expression Related with Macrophage Polarization and Myogenic Cells in the Triceps Long Head of Rats. Inflammation 38, 209–217 (2015). https://doi.org/10.1007/s10753-014-0024-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-0024-x

KEY WORDS

Navigation