Skip to main content
Log in

Analysis of the Gene Expression Profile of Curcumin-Treated Kidney on Endotoxin-Induced Renal Inflammation

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acute or chronic kidney inflammation is closely related to the progress of kidney diseases. Curcumin, a yellow pigment present in the rhizome of turmeric (Curcuma longa L. Zingiberaceae), was found to be a potential anti-inflammatory agent. The present study aimed to investigate the effects and explore the protective mechanism of curcumin on lipopolysaccharide (LPS)-induced kidney inflammation in mice using gene chip and pathological technology. Nine SPF Kunming mice (aged 6–8 weeks, weighing 20–25 g) were divided into three groups. Saline and LPS were injected intraperitoneally in a normal control group and a model group, respectively. Mice in the treatment group were first injected with curcumin (5 mg/kg) for 3 days before being injected with LPS (5 mg/kg). Kidney tissues were harvested at 6 h after treatment. Parts of kidney were fixed with 10 % formaldehyde for HE, Periodic acid-Schiff staining, and immunohistochemistry. Affymetrix gene chips (mouse 430 chip) were used to detect the renal gene expression profile, and the results were analyzed using bioinformatics methods. The renal gene expression profile showed that there are 148 Affy IDs (up-down group) whose levels of gene expression were increased after LPS stimulation and decreased by curcumin treatment and that there are 133 Affy IDs (down-up group) exhibiting the opposite trend. In the differentially expressed genes of the up-down group, 21 Gene Ontology (GO) genes were selected by screening function (P ≤ 0.01). In the biological processes, most of the genes were found to be related to the genes of regulation of macrophage activation and macrophage activation-associated genes. In the cellular localization, there were four functional GO genes (P ≤ 0.01); in the molecular structure, there were seven functional GO genes (P ≤ 0.01). In the down-up group, there were functional GO genes (P ≤ 0.01) and one functional GO gene (P ≤ 0.01) in the biological process and the cellular localization, respectively. Macrophage infiltration could be observed as early as 6 h after LPS stimulation. Pretreatment with 5 mg/kg of curcumin significantly decreased the macrophage infiltration. At 6 h after LPS injection, significant decreased expression of M6PRBP-1 and NEDD-4 was observed in renal tissue. On the other hand, pretreatment with curcumin significantly increased renal M6PRBP-1 and NEDD-4 expression. In this study, we also found the signaling pathway and the possible target gene of the protective effects of curcumin on endotoxin-induced renal inflammation. The kidney gene expression profile in the inflammatory state was clarified by using gene chip technology. Furthermore, we confirmed that curcumin treatment can change the gene expression profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Figure 9

Similar content being viewed by others

REFERENCES

  1. Healy, E., and H.R. Brady. 1998. Role of tubule epithelial cells in the pathogenesis of tubulointerstitial fibrosis induced by glomerular disease. Current Opinion in Nephrology and Hypertension 7(5): 525–530.

    Article  PubMed  CAS  Google Scholar 

  2. Page, R., C. Morris, J. Williams, C. von Ruhland, and A.N. Malik. 1997. Isolation of diabetes-associated kidney genes using differential display. Biochemical and Biophysical Research Communications 232(1): 49–53.

    Article  PubMed  CAS  Google Scholar 

  3. Yano, N., M. Endoh, Y. Nomoto, H. Sakai, K. Fadden, and A. Rifai. 1997. Phenotypic characterization of cytokine expression in patients with IgA nephropathy. Journal of Clinical Immunology 17(5): 396–403.

    Article  PubMed  CAS  Google Scholar 

  4. Yano, N., M. Endoh, K. Fadden, H. Yamashita, A. Kane, H. Sakai, and A. Rifai. 2000. Comprehensive gene expression profile of the adult human renal cortex: analysis by cDNA array hybridization. Kidney International 57(4): 1452–1459.

    Article  PubMed  CAS  Google Scholar 

  5. Silverstein, D.M., B.R. Travis, B.A. Thornhill, J.S. Schurr, J.K. Kolls, J.C. Leung, and R.L. Chevalier. 2003. Altered expression of immune modulator and structural genes in neonatal unilateral ureteral obstruction. Kidney International 64(1): 25–35.

    Article  PubMed  CAS  Google Scholar 

  6. Bascands, J.L., M. Bachvarova, E. Neau, J.P. Schanstra, and D. Bachvarov. 2009. Molecular determinants of LPS-induced acute renal inflammation: implication of the kinin B1 receptor. Biochemical and Biophysical Research Communications 386(2): 407–412.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, W.J., H. Wei, T. Hagen, and B. Frei. 2007. Alpha-lipoic acid attenuates LPS-induced inflammatory responses by activating the phosphoinositide 3-kinase/Akt signaling pathway. Proceedings of the National Academy of Sciences of the United States of America 104(10): 4077–4082.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, S., S. Kim, K.P. Kang, S.O. Moon, M.J. Sung, D.H. Kim, H.J. Kim, and S.K. Park. 2005. Agonist of peroxisome proliferator-activated receptor-gamma, rosiglitazone, reduces renal injury and dysfunction in a murine sepsis model. Nephrology, Dialysis, Transplantation 20(6): 1057–1065.

    Article  PubMed  CAS  Google Scholar 

  9. Ammon, H.P., and M.A. Wahl. 1991. Pharmacology of Curcuma longa. Planta Medica 57(1): 1–7.

    Article  PubMed  CAS  Google Scholar 

  10. Sikora, E., G. Scapagnini, and M. Barbagallo. 2010. Curcumin, inflammation, ageing and age-related diseases. Immunity & Ageing 7(1): 1.

    Article  CAS  Google Scholar 

  11. Epstein, J., I.R. Sanderson, and T.T. Macdonald. 2010. Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies. British Journal of Nutrition 103(11): 1545–1557.

    Article  PubMed  CAS  Google Scholar 

  12. Sumanont, Y., Y. Murakami, M. Tohda, O. Vajragupta, K. Matsumoto, and H. Watanabe. 2004. Evaluation of the nitric oxide radical scavenging activity of manganese complexes of curcumin and its derivative. Biological and Pharmaceutical Bulletin 27(2): 170–173.

    Article  PubMed  CAS  Google Scholar 

  13. Mahakunakorn, P., M. Tohda, Y. Murakami, K. Matsumoto, H. Watanabe, and O. Vajaragupta. 2003. Cytoprotective and cytotoxic effects of curcumin: dual action on H2O2-induced oxidative cell damage in NG108-15 cells. Biological and Pharmaceutical Bulletin 26(5): 725–728.

    Article  PubMed  CAS  Google Scholar 

  14. Shoskes, D.A. 1998. Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: a new class of renoprotective agents. Transplantation 66(2): 147–152.

    Article  PubMed  CAS  Google Scholar 

  15. Kuwabara, N., S. Tamada, T. Iwai, K. Teramoto, N. Kaneda, T. Yukimura, T. Nakatani, and K. Miura. 2006. Attenuation of renal fibrosis by curcumin in rat obstructive nephropathy. Urology 67(2): 440–446.

    Article  PubMed  Google Scholar 

  16. Kuhad, A., S. Pilkhwal, S. Sharma, N. Tirkey, and K. Chopra. 2007. Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. Journal of Agricultural and Food Chemistry 55(25): 10150–10155.

    Article  PubMed  CAS  Google Scholar 

  17. Jones, E.A., and D.A. Shoskes. 2000. The effect of mycophenolate mofetil and polyphenolic bioflavonoids on renal ischemia reperfusion injury and repair. Journal of Urology 163(3): 999–1004.

    Article  PubMed  CAS  Google Scholar 

  18. Ghosh, S.S., H.D. Massey, R. Krieg, Z.A. Fazelbhoy, S. Ghosh, D.A. Sica, I. Fakhry, and T.W. Gehr. 2009. Curcumin ameliorates renal failure in 5/6 nephrectomized rats: role of inflammation. American Journal of Physiology. Renal Physiology 296(5): F1146–F1157.

    Article  PubMed  CAS  Google Scholar 

  19. Fang, Z., C. Hui, H. Lin, J. Yuanmeng, and W. Weiming. 2011. Curcumin attenuates lipopolysaccharide-induced renal inflammation. Biological and Pharmaceutical Bulletin 34(2): 226–232.

    Article  CAS  Google Scholar 

  20. Tusher, V.G., R. Tibshirani, and G. Chu. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America 98(9): 5116–5121.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, S. 2007. A comprehensive evaluation of SAM, the SAM R-package and a simple modification to improve its performance. BMC Bioinformatics 29(8): 230.

    Article  Google Scholar 

  22. Zhang, M., L. Zhang, J. Zou, C. Yao, H. Xiao, Q. Liu, J. Wang, D. Wang, C. Wang, and Z. Guo. 2009. Evaluating reproducibility of differential expression discoveries in microarray studies by considering correlated molecular changes. Bioinformatics 25(13): 1662–1668.

    Article  PubMed  CAS  Google Scholar 

  23. da Huang, W., B.T. Sherman, and R.A. Lempicki. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4(1): 44–57.

    Article  CAS  Google Scholar 

  24. Haut, S., M. Brivet, G. Touati, P. Rustin, S. Lebon, A. Garcia-Cazorla, J.M. Saudubray, A. Boutron, A. Legrand, and A. Slama. 2003. A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis. Human Genetics 113(2): 118–122.

    PubMed  CAS  Google Scholar 

  25. Keepers, T.R., L.K. Gross, and T.G. Obrig. 2007. Monocyte chemoattractant protein 1, macrophage inflammatory protein 1 alpha, and RANTES recruit macrophages to the kidney in a mouse model of hemolytic-uremic syndrome. Infection and Immunity 75(3): 1229–1236.

    Article  PubMed  CAS  Google Scholar 

  26. Gerhold, D.L., R.V. Jensen, and S.R. Gullans. 2002. Better therapeutics through microarrays. Nature Genetics 32(Suppl): 547–551.

    Article  PubMed  CAS  Google Scholar 

  27. Butte, A. 2002. The use and analysis of microarray data. Nature Reviews. Drug Discovery 1(12): 951–960.

    Article  PubMed  CAS  Google Scholar 

  28. Shipp, M.A., K.N. Ross, P. Tamayo, A.P. Weng, J.L. Kutok, R.C. Aguiar, M. Gaasenbeek, M. Angelo, M. Reich, G.S. Pinkus, T.S. Ray, M.A. Koval, K.W. Last, A. Norton, T.A. Lister, J. Mesirov, D.S. Neuberg, E.S. Lander, J.C. Aster, and T.R. Golub. 2002. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8(1): 68–74.

    Article  PubMed  CAS  Google Scholar 

  29. Hayden, P.S., A. El-Meanawy, J.R. Schelling, and J.R. Sedor. 2003. DNA expression analysis: serial analysis of gene expression, microarrays and kidney disease. Current Opinion in Nephrology and Hypertension 12(4): 407–414.

    Article  PubMed  CAS  Google Scholar 

  30. Eikmans, M., H.J. Baelde, E. de Heer, and J.A. Bruijn. 2002. RNA expression profiling as prognostic tool in renal patients: toward nephrogenomics. Kidney International 62(4): 1125–1135.

    Article  PubMed  CAS  Google Scholar 

  31. Cho, J.W., K.S. Lee, and C.W. Kim. 2007. Curcumin attenuates the expression of IL-1beta, IL-6, and TNF-alpha as well as cyclin E in TNF-alpha-treated HaCaT cells; NF-kappaB and MAPKs as potential upstream targets. International Journal of Molecular Medicine 19(3): 469–474.

    PubMed  CAS  Google Scholar 

  32. Li, X., S. Jia, S. Wang, Y. Wang, and A. Meng. 2009. Mta3-NuRD complex is a master regulator for initiation of primitive hematopoiesis in vertebrate embryos. Blood 114(27): 5464–5472.

    Article  PubMed  CAS  Google Scholar 

  33. Markson, G., C. Kiel, R. Hyde, S. Brown, P. Charalabous, A. Bremm, J. Semple, J. Woodsmith, S. Duley, K. Salehi-Ashtiani, M. Vidal, D. Komander, L. Serrano, P. Lehner, and C.M. Sanderson. 2009. Analysis of the human E2 ubiquitin conjugating enzyme protein interaction network. Genome Research 19(10): 1905–1911.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, F., Chen, H., Jin, Y. et al. Analysis of the Gene Expression Profile of Curcumin-Treated Kidney on Endotoxin-Induced Renal Inflammation. Inflammation 36, 80–93 (2013). https://doi.org/10.1007/s10753-012-9522-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9522-x

KEY WORDS

Navigation