Skip to main content

Advertisement

Log in

Luteolin Prevents LPS-Induced TNF-α Expression in Cardiac Myocytes Through Inhibiting NF-κB Signaling Pathway

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Luteolin, a plant flavonoid, has been shown to suppress inflammatory responses; however, the mechanism of luteolin on cardiac myocyte inflammation is still unknown. Because tumor necrosis factor-α (TNF-α), an inflammatory cytokine, is elevated in the failing heart and exerts multiple potentially harmful effects on cardiac myocytes, we therefore sought to examine the effects of luteolin on the expression of TNF-α in neonatal rat cardiac myocytes. In the present study, enzyme-linked immunosorbent assay (ELISA), real-time PCR, immunoblot, immunochemistry staining, and electrophoretic mobility shift assays (EMSA) were performed. ELISA assay showed that luteolin decreased lipopolysaccharide (LPS)-induced production of TNF-α in the medium. Real-time PCR assay confirmed that luteolin also inhibited LPS-induced increase in TNF-α mRNA in myocytes. Furthermore, immunoblot and immunochemistry staining assays represented that luteolin blocked LPS-induced IκB-β degradation and NF-κB p65 subunit nuclear translocation. In addition, EMSA demonstrated that luteolin reduced LPS-induced NF-κB DNA binding activity. Luteolin protects against LPS-induced TNF-α expression via inhibition of the NF-κB signaling pathway, suggesting that luteolin may be a potential therapeutic agent for the treatment of inflammation-related myocardial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LPS:

Lipopolysaccharide

TNF-α:

Tumor necrosis factor-α

DMEM:

Dulbecco’s modified Eagle’s medium

ELISA:

Enzyme-linked immunosorbent assay

NF-κB:

Nuclear factor-κB

PDTC:

Pyrrolidine dithiocarbamate

EMSA:

Electrophoretic mobility shift assays

REFERENCES

  1. Feldman, A.M., A. Combes, D. Wagner, T. Kadakomi, T. Kubota, Y.Y. Li, and C. McTiernan. 2000. The role of tumor necrosis factor in the pathophysiology of heart failure. Journal of the American College of Cardiology 35: 537–544.

    Article  PubMed  CAS  Google Scholar 

  2. Meldrum, D.R. 1998. Tumor necrosis factor in the heart. The American Journal of Physiology 274: R577–R595.

    PubMed  CAS  Google Scholar 

  3. Hickson-Bick, D.L., C. Jones, and L.M. Buja. 2006. The response of neonatal rat ventricular myocytes to lipopolysaccharide-induced stress. Shock 25: 546–552.

    Article  PubMed  CAS  Google Scholar 

  4. Candelore, M.R., M.J. Wright, L.M. Tota, J. Milligan, G.J. Shei, J.D. Bergstrom, and S.M. Mandala. 2002. Phytosphingosine 1-phosphate: a high affinity ligand for the S1P(4)/Edg-6 receptor. Biochemical and Biophysical Research Communications 297: 600–606.

    Article  PubMed  Google Scholar 

  5. Valen, G., Z.Q. Yan, and G.K. Hansson. 2001. Nuclear factor kappa-B and the heart. Journal of the American College of Cardiology 38: 307–314.

    Article  PubMed  CAS  Google Scholar 

  6. Takeshita, A., H. Shinoda, Y. Nakabayashi, A. Takano, K. Matsumoto, M. Suetsugu, K. Miyazawa, S. Tanaka, H. Endo, S. Tanaka, Y. Ueyama, A. Hanzawa, Y. Suda, H. Kanegae, and T. Yasui. 2005. Sphingosine 1-phosphate acts as a signal molecule in ceramide signal transduction of TNF-alpha-induced activator protein-1 in osteoblastic cell line MC3T3-E1 cells. Journal of Oral Science 47: 43–51.

    Article  PubMed  CAS  Google Scholar 

  7. Jaffe, A.B., A. Hall, and A. Schmidt. 2005. Association of CNK1 with Rho guanine nucleotide exchange factors controls signaling specificity downstream of Rho. Current Biology 15: 405–412.

    Article  PubMed  CAS  Google Scholar 

  8. Jennings, G.R., M.R. Castresana, and W.H. Newman. 2004. Regulation of tumor necrosis factor-alpha production in the isolated rat heart stimulated by bacterial lipopolysaccharide or reactive oxygen. The American Surgeon 70: 797–800.

    PubMed  Google Scholar 

  9. Shimoi, K., H. Okada, M. Furugori, T. Goda, S. Takase, M. Suzuki, Y. Hara, H. Yamamoto, and N. Kinae. 1998. Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans. FEBS Letters 438: 220–224.

    Article  PubMed  CAS  Google Scholar 

  10. Xagorari, A., A. Papapetropoulos, A. Mauromatis, M. Economou, T. Fotsis, and C. Roussos. 2001. Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. The Journal of Pharmacology and Experimental Therapeutics 296: 181–187.

    PubMed  CAS  Google Scholar 

  11. Kotanidou, A., A. Xagorari, E. Bagli, P. Kitsanta, T. Fotsis, A. Papapetropoulos, and C. Roussos. 2002. Luteolin reduces lipopolysaccharide-induced lethal toxicity and expression of proinflammatory molecules in mice. American Journal of Respiratory and Critical Care Medicine 165: 818–823.

    PubMed  Google Scholar 

  12. Kim, S.H., K.J. Shin, D. Kim, Y.H. Kim, M.S. Han, T.G. Lee, E. Kim, S.H. Ryu, and P.G. Suh. 2003. Luteolin inhibits the nuclear factor-kappa B transcriptional activity in Rat-1 fibroblasts. Biochemical Pharmacology 66: 955–963.

    Article  PubMed  CAS  Google Scholar 

  13. Gutierrez-Venegas, G., P. Kawasaki-Cardenas, S.R. Arroyo-Cruz, and S. Maldonado-Frias. 2006. Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts. European Journal of Pharmacology 541: 95–105.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, C.Y., W.H. Peng, K.D. Tsai, and S.L. Hsu. 2007. Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages. Life Sciences 81: 1602–1614.

    Article  PubMed  CAS  Google Scholar 

  15. Wagner, D.R., A. Combes, C. McTiernan, V.J. Sanders, B. Lemster, and A.M. Feldman. 1998. Adenosine inhibits lipopolysaccharide-induced cardiac expression of tumor necrosis factor-alpha. Circulation Research 82: 47–56.

    PubMed  CAS  Google Scholar 

  16. Fu, J.J., H. Gao, R.B. Pi, and P.Q. Liu. 2005. An optimized protocol for culture of cardiomyocyte from neonatal rat. Cytotechnology 49: 109–116.

    Article  CAS  Google Scholar 

  17. Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29: e45.

    Article  PubMed  CAS  Google Scholar 

  18. Kim, H.K., B.S. Cheon, Y.H. Kim, S.Y. Kim, and H.P. Kim. 1999. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochemical Pharmacology 58: 759–765.

    Article  PubMed  CAS  Google Scholar 

  19. Jang, S., K.W. Kelley, and R.W. Johnson. 2008. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proceedings of the National Academy of Sciences of the United States of America 105: 7534–7539.

    Article  PubMed  CAS  Google Scholar 

  20. Verma, I.M., J.K. Stevenson, E.M. Schwarz, D. Van Antwerp, and S. Miyamoto. 1995. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes & Development 9: 2723–2735.

    Article  CAS  Google Scholar 

  21. Wright, G., I.S. Singh, J.D. Hasday, I.K. Farrance, G. Hall, A.S. Cross, and T.B. Rogers. 2002. Endotoxin stress-response in cardiomyocytes: NF-kappaB activation and tumor necrosis factor-alpha expression. American Journal of Physiology. Heart and Circulatory Physiology 282: H872–H879.

    PubMed  CAS  Google Scholar 

  22. Swantek, J.L., L. Christerson, and M.H. Cobb. 1999. Lipopolysaccharide-induced tumor necrosis factor-alpha promoter activity is inhibitor of nuclear factor-kappaB kinase-dependent. The Journal of Biological Chemistry 274: 11667–11671.

    Article  PubMed  CAS  Google Scholar 

  23. Kim, J.S., and C. Jobin. 2005. The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone marrow-derived dendritic cells. Immunology 115: 375–387.

    Article  PubMed  CAS  Google Scholar 

  24. Comalada, M., I. Ballester, E. Bailon, S. Sierra, J. Xaus, J. Galvez, F.S. de Medina, and A. Zarzuelo. 2006. Inhibition of proinflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure-activity relationship. Biochemical Pharmacology 72: 1010–1021.

    Article  PubMed  CAS  Google Scholar 

  25. Torre-Amione, G., S. Kapadia, J. Lee, J.B. Durand, R.D. Bies, J.B. Young, and D.L. Mann. 1996. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93: 704–711.

    PubMed  CAS  Google Scholar 

  26. Haudek, S.B., E. Spencer, D.D. Bryant, D.J. White, D. Maass, J.W. Horton, Z.J. Chen, and B.P. Giroir. 2001. Overexpression of cardiac I-kappaBalpha prevents endotoxin-induced myocardial dysfunction. American Journal of Physiology. Heart and Circulatory Physiology 280: H962–H968.

    PubMed  CAS  Google Scholar 

  27. Hall, G., J.D. Hasday, and T.B. Rogers. 2006. Regulating the regulator: NF-kappaB signaling in heart. Journal of Molecular and Cellular Cardiology 41: 580–591.

    Article  PubMed  CAS  Google Scholar 

  28. Soo, I., K.L. Madsen, Q. Tejpar, B.C. Sydora, R. Sherbaniuk, B. Cinque, L. Di Marzio, M.G. Cifone, C. Desimone, and R.N. Fedorak. 2008. VSL#3 probiotic upregulates intestinal mucosal alkaline sphingomyelinase and reduces inflammation. Canadian Journal of Gastroenterology 22: 237–242.

    PubMed  CAS  Google Scholar 

  29. Tormakangas, L., P. Vuorela, E. Saario, M. Leinonen, P. Saikku, and H. Vuorela. 2005. In vivo treatment of acute Chlamydia pneumoniae infection with the flavonoids quercetin and luteolin and an alkyl gallate, octyl gallate, in a mouse model. Biochemical Pharmacology 70: 1222–1230.

    Article  PubMed  Google Scholar 

  30. Kang, O.H., J.G. Choi, J.H. Lee, and D.Y. Kwon. 2010. Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-kappaB and MAPKs activation pathways in HMC-1 cells. Molecules 15: 385–398.

    Article  PubMed  CAS  Google Scholar 

  31. Li, X.Q., W. Cao, T. Li, A.G. Zeng, L.L. Hao, X.N. Zhang, and Q.B. Mei. 2009. Amlodipine inhibits TNF-alpha production and attenuates cardiac dysfunction induced by lipopolysaccharide involving PI3K/Akt pathway. International Immunopharmacology 9: 1032–1041.

    Article  PubMed  CAS  Google Scholar 

  32. Takano, H., T. Nagai, M. Asakawa, T. Toyozaki, T. Oka, I. Komuro, T. Saito, and Y. Masuda. 2000. Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-alpha expression in neonatal rat cardiac myocytes. Circulation Research 87: 596–602.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was based on a project supported by the Scientific Research Fund of Hunan Provincial Education Department (no: 09C048), China. We thank Dr. Tian Lan for the helpful suggestion and discussion during the study.

Conflicts of interest

The authors affirm that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Lv.

ELECTRONIC SUPPLEMENTARY MATERIALS

Below is the link to the electronic supplementary material.

ESM 1

(GIF 389 kb)

High resolution image (TIFF 10092 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, L., Lv, L., Zhang, Y. et al. Luteolin Prevents LPS-Induced TNF-α Expression in Cardiac Myocytes Through Inhibiting NF-κB Signaling Pathway. Inflammation 34, 620–629 (2011). https://doi.org/10.1007/s10753-010-9271-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-010-9271-7

KEY WORDS

Navigation