Skip to main content
Log in

Observation of photoexcitation of Fe-oxide grown on TiO2(100) by visible light irradiation

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Electronic excitation of materials is of fundamental and technological importance and interest in terms of photoinduced phase transition, photovoltaics, and photocatalysis. In the present study, photoexcitation of Fe2 O 3 epitaxially grown on rutile TiO2(100) was investigated with conversion electron Mössbauer spectroscopy (CEMS) under dominantly visible-light irradiation. 57Fe was deposited on the substrate at a substrate temperature of 973 K, and the resulting film was characterized by RHEED and XPS. After deposition of Fe on TiO2(100), it was found that Fe was oxidized to Fe 3+, and the structure was analyzed to be the rhombohedral phase of Fe2 O 3. While the CEMS spectrum without light irradiation showed a quadrupole splitting of 0.80 mm/s with an isomer shift of +0.25 mm/s, an additional component with a quadrupole splitting of 0.85 and an isomer shift of +0.67 mm/s was observed under light irradiation. The latter component corresponds to a reduced state of Fe at the octahedral site surrounded by oxygen atoms. The lifetime of this photoexcited state is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)

    Article  ADS  Google Scholar 

  2. Morisaki, H., Hariya, M., Yazawa, K.: Anomalous photoresonanse of n-TiO2 electrode in a photoelectrochemical cell. Appl. Phys. Lett. 30, 7 (1977)

    Article  ADS  Google Scholar 

  3. Sakthievel, S., Janczarek, M, Kisch, H.: Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J. Phys. Chem. B 108, 19384 (2004)

    Article  Google Scholar 

  4. Wang, X H, Li, J G, Kamiyama, H., Moriyoshi, Y., Ishigaki, T.: Wevelength-sensitive photocatalytic degradation of methyl orange in aquareous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. J. Phys. Chem. B 110 (2006)

  5. Lee, J Y, Park, J., Cho, J H: Electronic properties of N- and C-doped TiO2. Appl. Phys. Lett. 87, 011904 (2005)

    Article  ADS  Google Scholar 

  6. Han, C, Pelaez, M., Likodimos, V., Kontos, A G, Falaras, P., O’Shea, K., Dionysiou, D D: Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal. B 107, 77 (2011)

    Article  Google Scholar 

  7. Litter, M I, Navío: Photocatalytic properties of iron-doped titania semiconductors. J. Photochem. Photobio. A 98, 171 (1996)

    Article  Google Scholar 

  8. Xia, Y., Yin, L.: Core-shell structured α-Fe -Fe2 O 3@TiO2 nanocomposites with improved photocatalytic activity in the visible lifgt region. Phys. Chem. Chem. Phys. 15, 18627 (2013)

    Article  Google Scholar 

  9. Iordanova, N., Dupuis, M., Rosso, K M: Charge transport in metal oxide: a theoretical study of hematite α-Fe2 O 3. J. Chem. Phys. 122, 144305 (2005)

    Article  ADS  Google Scholar 

  10. Smestad, G P, Krebs, F C, Lampert, C M, Chopra, K L, Methew, X, Takakura, H: Reporting solar cell efficiencies in solar energy materials and solar cells. Solar Energy Matel. Solar Cells 92, 371 (2008)

    Article  Google Scholar 

  11. Diebold, U: The surface science of titanium dioxide. Surf Sci. Rep. 48, 53 (2009)

    Article  ADS  Google Scholar 

  12. Muryn, C A, Hardman, R J, Crouch, J J, Raiker, G N, Thornton, G.: Step and point defect effects on TiO2(100) reactivity. Surf Sci. 251/252, 747 (1991)

    Article  ADS  Google Scholar 

  13. Kunze, C., Torun, B., Giner, I, Grundmeier, G.: Surface chemistry and nonadecanoic acid adsorbate layers on TiO2(100) surfaces prepared at ambient conditions. Surf. Sci. 606, 1527 (2012)

    Article  ADS  Google Scholar 

  14. Brudle, C R, Chuang, T J, Wandelt: Core valence level photoemission studies of iron oxide surfaces and the oxidation of iron. Surf. Sci. 68, 459 (1977)

    Article  ADS  Google Scholar 

  15. Kündig, W, Bömmel, H, Constabaris, Lindquist, R.H.: Some properties of supported small α-Fe2 O 3 particles determined eith the Mössbauer effect. Phys. Rev. 142, 327 (1966)

    Article  ADS  Google Scholar 

  16. Gohy, C., Gérard, A., Grandjean, F.: Mössbauer study of wustite and mangano-wustite. Phys. Stat. Sol. (a) 74, 583 (1982)

    Article  ADS  Google Scholar 

  17. Glasscock, J A, Barnes, P R F, Plumb, I C, Bemdavid, A., Martin, P J: Structural, optical electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition. Thin Solid Films 516, 1716 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taizo Kawauchi.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mossbauer Effect (ICAME 2015), Hamburg, Germany, 13-18 September 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawauchi, T., Nagatsuka, N. & Fukutani, K. Observation of photoexcitation of Fe-oxide grown on TiO2(100) by visible light irradiation. Hyperfine Interact 237, 73 (2016). https://doi.org/10.1007/s10751-016-1230-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-016-1230-8

Keywords

Navigation