Skip to main content
Log in

Antiproton cloud compression in the ALPHA apparatus at CERN

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We have observed a new mechanism for compression of a non-neutral plasma, where antiprotons embedded in an electron plasma are compressed by a rotating wall drive at a frequency close to the sum of the axial bounce and rotation frequencies. The radius of the antiproton cloud is reduced by up to a factor of 20 and the smallest radius measured is ∼ 0.2 mm. When the rotating wall drive is applied to either a pure electron or pure antiproton plasma, no compression is observed in the frequency range of interest. The frequency range over which compression is evident is compared to the sum of the antiproton bounce frequency and the system’s rotation frequency. It is suggested that bounce resonant transport is a likely explanation for the compression of antiproton clouds in this regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holzscheiter, M.H., Charlton, M., Nieto, M.M.: Phys. Rep. 402, 1–101 (2004)

    Article  ADS  Google Scholar 

  2. Andresen, G.B., et al.: Phys. Lett. B 685, 141 (2010)

    Article  ADS  Google Scholar 

  3. Andresen, G.B., et al.: Nature 468, 673 (2010)

    Article  ADS  Google Scholar 

  4. Andresen, G.B., et al.: Nat. Phys. 7, 558 (2011)

    Article  Google Scholar 

  5. Amole, C., et al.: Nature 483, 439 (2012)

    Article  ADS  Google Scholar 

  6. Dubin, D.H.E., O’Neil, T.M.: Rev. Mod. Phys. 71, 87 (1999)

    Article  ADS  Google Scholar 

  7. Amoretti, M., et al.: Nature 419, 456 (2002)

    Article  ADS  Google Scholar 

  8. Malmberg, J.H., Driscoll, C.F.: Phys. Rev. Lett. 44, 654 (1980)

    Article  ADS  Google Scholar 

  9. Eggleston, D.L., O’Neil, T.M., Malmberg, J.H.: Phys. Rev. Lett. 53, 982 (1984)

    Article  ADS  Google Scholar 

  10. Notte, J., Fajans, J.: Phys. Plasmas 1, 1123 (1994)

    Article  ADS  Google Scholar 

  11. Huang, X.-P., et al.: Phys. Plasmas 5, 1656 (1998)

    Article  ADS  Google Scholar 

  12. Huang, X.-P., et al.: Phys. Rev. Lett. 78, 875 (1997)

    Article  ADS  Google Scholar 

  13. Jonsell, S., et al.: J. Phys. B: At. Mol. Opt. Phys. 42, 215002 (2009)

    Article  ADS  Google Scholar 

  14. Amole, C., et al.: Nucl. Instr. and Meth. A 735, 319 (2014)

    Article  ADS  Google Scholar 

  15. Gilson, E.P., Fajans, J.: Phys. Rev. Lett. 90, 015001 (2003)

    Article  ADS  Google Scholar 

  16. Fajans, J., et al.: Phys. Plasmas 15, 032108 (2008)

    Article  ADS  Google Scholar 

  17. Andresen, G.B., et al.: Phys. Rev. Lett. 100, 203401 (2008)

    Article  ADS  Google Scholar 

  18. Kuroda, N., et al.: Phys. Rev. Lett. 100, 203402 (2008)

    Article  ADS  Google Scholar 

  19. Andresen, G.B., et al.: Rev. Sci. Inst. 80, 123701 (2009)

    Article  ADS  Google Scholar 

  20. Gabrielse, G., et al.: Phys. Rev. Lett. 63, 1360 (1989)

    Article  ADS  Google Scholar 

  21. Andresen, G.B., et al.: Phys. Rev. Lett. 106, 145001 (2011)

    Article  ADS  Google Scholar 

  22. Trivelpiece, A.W., Gould, R.W.: J. App. Phys. 30, 1784 (1959)

    Article  ADS  Google Scholar 

  23. Anderegg, F., et al.: Phys. Rev. Lett. 81, 4875 (1998)

    Article  ADS  Google Scholar 

  24. Wineland, D., Dehmelt, H.: Int. J. Mass Spectrom. Ion Phys. 16, 338 (1975)

    Article  ADS  Google Scholar 

  25. Brown, L.S., Gabrielse, G.: Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  26. Kellerbauer, A., et al.: Phys. Rev. A 73, 062508 (2006)

    Article  ADS  Google Scholar 

  27. Isaac, C.A., et al.: Phys. Rev. Lett. 107, 033201 (2011)

    Article  ADS  Google Scholar 

  28. Deller, A., et al.: New. J. Phys. 16, 073028 (2014)

    Article  ADS  Google Scholar 

  29. Eggleston, D.L., O’Neil, T.M.: Phys. Plasmas 6, 2699 (1999)

    Article  ADS  Google Scholar 

  30. Greaves, R.G., Surko, C.M.: Phys. Plasmas 8, 1879 (2001)

    Article  ADS  Google Scholar 

  31. Eggleston, D.L., Carrillo, B.: Phys. Plasmas 9, 786 (2002)

    Article  ADS  Google Scholar 

  32. Eggleston, D.L., Carrillo, B.: Phys. Plasmas 10, 1308 (2003)

    Article  ADS  Google Scholar 

  33. Greaves, R.G., Moxom, J.M.: Phys. Plasmas 15, 072304 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gutierrez.

Additional information

Proceedings of the 6th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2014), Takamatsu, Japan,1-5 December 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutierrez, A., Ashkezari, M.D., Baquero-Ruiz, M. et al. Antiproton cloud compression in the ALPHA apparatus at CERN. Hyperfine Interact 235, 21–28 (2015). https://doi.org/10.1007/s10751-015-1202-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-015-1202-4

Keywords

Navigation