Skip to main content
Log in

Towards sympathetic cooling of trapped ions with laser-cooled Mg +  ions for mass spectrometry and laser spectroscopy

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Sympathetic cooling by laser cooled Mg ions has been proposed as a method for fast cooling of highly charged ions to a very low temperature. The paper describes the construction of the solid state laser system at 279.63 nm required for laser cooling of the Mg ions. The laser system is composed of a fiber laser at 1,118.54 nm and two successive second harmonic generation (SHG) ring cavities for frequency quadrupling. In the first SHG cavity, non-critical phase matching of a lithium triborate (LBO) crystal is used for doubling from 1,118.54 to 559.27 nm. The second SHG cavity uses critical phase matching of a β-barium borate (BBO) crystal for doubling from 559.27 to 279.63 nm. With the aid of Boyd–Kleinmann theory, optimum experimental parameters are calculated and used for an efficient SHG. Besides this, the paper intends to be a shortcut for practical applications of the Boyd–Kleinmann theory for SHG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Itano, W.M., Berquist, J.C., Bollinger, J.J., Wineland, D.J.: Phys. Scr. T59, 106–120 (1995)

    Article  ADS  Google Scholar 

  2. Blaum, K.: Phys. Rep. 425, 1–78 (2006)

    Article  ADS  Google Scholar 

  3. Bussmann, M., Schramm, U., Habs, D., Kolhinen, V.S., Szerypo, J.: Int. J. Mass Spectrom. 251, 179–189 (2006)

    Article  ADS  Google Scholar 

  4. Beier, T.: Phys. Rep. 339, 79–213 (2000)

    Article  ADS  Google Scholar 

  5. Winters, D.F.A., Abdulla, A.M., Castrejon Pita, J.R., de Lange, A., Segal, D.M., Thompson, R.C.: Nucl. Instrum. Methods Phys. Res B 235, 201–205 (2005)

    Article  ADS  Google Scholar 

  6. Klaft, I., Borneis, S., Engel, T., Fricke, B., Grieser, R., Huber, G., Kühl, T., Marx, D., Neumann, R., Schröder, S., Seelig, P., Völker, L.: Phys. Rev. Lett. 73, 2425–2427 (1994)

    Article  ADS  Google Scholar 

  7. Shabaev, V.M., Artemyev, A.N., Yerokhin, V.A., Zherebtsov, O.M., Soff, G.: Phys. Rev. Lett. 86, 3959–3962 (2001)

    Article  ADS  Google Scholar 

  8. Vogel, M., Winters, D.F.A., Segal, D.M., Thompson, R.C.: Rev. Sci. Instrum. 76, 103102 (2005)

    Article  ADS  Google Scholar 

  9. Andjelkovic, Z., Bharadia, S., Sommer, B., Vogel, M., Nörtershäuser, W.: Towards high precision in-trap laser spectroscopy of highly charged ions. Hyperfine Interact. doi:10.1007/s10751-009-0155-x (2010)

    Google Scholar 

  10. Kluge, H.-J., Beier, T., Nlaum, K., Dahl, L., Eliseev, S., Herfurth, F., Hofmann, B., Kester, O., Koszudowski, S., Kozhuharov, C., Maero, G., Nörtershäuser, W., Pfister, J., Quint, W., Ratzinger, U., Schempp, A., Schuch, R., Stöhlker, Th., Thompson, R.C., Vogel, M., Vorobjev, G., Winters, D.F.A., Werth, G.: Adv. Quantum Chem. 53, 83–98 (2008)

    Article  ADS  Google Scholar 

  11. Hänsch, T.W., Schawlowa, A.L.: Opt. Commun. 13, 68–69 (1975)

    Article  ADS  Google Scholar 

  12. Phillips, W.D., Lett, P.D., Rolston, S.L., Tanner, C.E., Watts, R.N., Westbrook, C.I., Salomon, C., Dalibard, J., Clairon, A., Guellati, S.: Phys. Scr. T34, 20–22 (1991)

    Article  ADS  Google Scholar 

  13. Drullinger, R.E., Wineland, D.J., Bergquist, J.C.: Appl. Phys. 22, 365–368 (1980)

    Article  ADS  Google Scholar 

  14. Canning, J: Opt. Lasers Eng. 44, 647–676 (2006)

    Article  Google Scholar 

  15. Mimoun, E., de Sarlo, L., Zondy, J.-J., Dalibard, J., Gerbier, F.: Opt. Express 16, 18684–18691 (2008)

    Article  ADS  Google Scholar 

  16. Boyd, G.D., Kleinman, D.A.: J. Appl. Phys. 39, 3597–3639 (1968)

    Article  ADS  Google Scholar 

  17. Friedenauer, A., Markert, F., Schmitz, H.,Petersen, L., Kahra, S., Herrmann, M., Udem, T., Hänsch, T.W., Schätz, T.: Appl. Phys., B 84, 371–373 (2006)

    Article  ADS  Google Scholar 

  18. Herskind, P., Lindballe, J., Clausen, C., Srensen, J.L., Drewsen, M.: Opt. Lett. 32, 268–270 (2007)

    Article  ADS  Google Scholar 

  19. Brieger, M., Büsener, H., Hese, A., v.Moers, F., Renn, A.: Opt. Commun. 38, 423–426 (1981)

    Article  ADS  Google Scholar 

  20. Freeregarde, T., Zimmermann, C.: Opt. Commun. 199, 435–446 (2001)

    Article  ADS  Google Scholar 

  21. Hänsch, T.W., Couillaud, B.: Opt. Commun. 35, 441–443 (1980)

    Article  ADS  Google Scholar 

  22. Nielsen, J.S.: Opt. Lett. 20, 840–842 (1995)

    Article  ADS  Google Scholar 

  23. Kondo, K., Oka, M., Wada, H., Fukui, T., Umezu, N., Tatsuki, K., Kubota S.: Opt. Lett. 23, 195–197 (1998)

    Article  ADS  Google Scholar 

  24. Bhawalkar, J.D., Mao, Y., Po, H., Goyal, A.K., Gavrilovic, P., Conturie, Y., Singh, S.: Opt. Lett. 24, 823–825 (1999)

    Article  ADS  Google Scholar 

  25. Madsen, D.N., Yu, P., Balslev S., Thomsen J.W.: Appl. Phys. B 75, 835–839 (2002)

    Article  ADS  Google Scholar 

  26. http://www.dreebit.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Cazan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cazan, R., Geppert, C., Nörtershäuser, W. et al. Towards sympathetic cooling of trapped ions with laser-cooled Mg +  ions for mass spectrometry and laser spectroscopy. Hyperfine Interact 196, 177–189 (2010). https://doi.org/10.1007/s10751-009-0144-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-009-0144-0

Keywords

Navigation