Skip to main content

Advertisement

Log in

Projected compositional shifts and loss of ecosystem services in freshwater fish communities under climate change scenarios

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

What are the projected impacts of climate change on community composition and consequentially on the distribution of functional traits? Answers to these questions are somewhat unclear but critical for designing ecological management strategies. Here we forecast potential impacts of climate change on freshwater lake fish communities of Ontario, Canada, by contrasting species composition, species richness, functional diversity and functional composition for present versus projected communities under “best-case” and “business-as-usual” climate change scenarios. Results indicate that the composition of projected communities differs from present, and includes a shift from cold- and cool-water species to warm-water species. Species richness in projected communities is estimated to increase by 60–81%, but functional diversity is estimated to decline. These projected communities are estimated to have on average 22% shorter mean body length, 38% lighter body weight and 36% less fecundity than present. Also, the present configuration of sport and commercially important fishes are projected to decline in their distribution, potentially impacting ecosystem services associated with commercial and recreational fisheries. Together, climate change may initiate a compositional shift that may result in an important shift in community functional structure, which is likely to affect important aquatic ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alofs, K. M. & D. A. Jackson, 2015a. The abiotic and biotic factors limiting establishment of predatory fishes at their expanding northern range boundaries in Ontario, Canada. Global Change Biology 21: 2227–2237.

    Article  PubMed  Google Scholar 

  • Alofs, K. M. & D. A. Jackson, 2015b. The vulnerability of species to range expansions by predators can be predicted using historical species associations and body size. Proceedings of the Royal Society B: Biological Sciences 282: 20151211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alofs, K. M., D. A. Jackson & N. P. Lester, 2014. Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Diversity and Distributions 20: 123–136.

    Article  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Araújo, M. B. & A. T. Peterson, 2012. Uses and misuses of bioclimatic envelope modeling. Ecology 93: 1527–1539.

    Article  PubMed  Google Scholar 

  • Atkinson, D., 1994. Temperature and organism size – a biological law for ectotherms? Advances in Ecological Research 3: 1–58.

    Google Scholar 

  • Barbet-Massin, M. & W. Jetz, 2015. The effect of range changes on the functional turnover, structure and diversity of bird assemblages under future climate scenarios. Global Change Biology 21: 2917–2928.

    Article  PubMed  Google Scholar 

  • Bergmann, C., 1847. Uber die verh¨ altnisse der warme ¨ okonomie der thiere ¨ zuihrer grosse. Gott. Stud. 1: 595–708.

    Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.

    Article  PubMed  Google Scholar 

  • Botkin, D. B., H. Saxe, M. B. Araújo, R. Betts, R. H. W. Bradshaw, T. Cedhagen, P. Chesson, T. P. Dawson, J. R. Etterson, D. P. Faith, S. Ferrier, A. Guisan, A. S. Hansen, D. W. Hilbert, C. Loehle, C. Margules, M. New, M. J. Sobel & D. R. B. Stockwell, 2007. Forecasting the effects of global warming on biodiversity. BioScience 57: 227–236.

    Article  Google Scholar 

  • Cadotte, M. W., K. Carscadden & N. Mirotchnick, 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48: 1079–1087.

    Article  Google Scholar 

  • Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. Mace, D. Tilman, D. A. Wardle, A. P. Kinzig, G. C. Daily, M. Loreau, J. B. Grace, A. Larigauderie, D. S. Srivastava & S. Naeem, 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Chen, I.-C., J. K. Hill, R. Ohlemüller, D. B. Roy & C. D. Thomas, 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333: 1024–1026.

    Article  CAS  PubMed  Google Scholar 

  • Christie, G. C. & H. A. Regier, 1988. Measures of optimal thermal habitat and their relationship to yields for four commercial fish species. Canadian Journal of Fisheries and Aquatic Sciences 45: 301–314.

    Article  Google Scholar 

  • Chu, C., N. E. Mandrak & C. K. Minns, 2005. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Diversity and Distributions 11: 299–310.

    Article  Google Scholar 

  • Civantos, E., W. Thuiller, L. Maiorano, A. Guisan & M. B. Araujo, 2012. Potential impacts of climate change on ecosystem services in Europe: the case of pest control by vertebrates. BioScience 62: 658–666.

    Article  Google Scholar 

  • Daufresne, M. & P. Boët, 2007. Climate change impacts on structure and diversity of fish communities in rivers. Global Change Biology 13: 2467–2478.

    Article  Google Scholar 

  • Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National academy of Sciences of the United States of America 106: 12788–12793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz, S., S. Lavorel, F. De Bello, F. Quétier, K. Grigulis & T. M. Robson, 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences 104: 20684–20689.

    Article  Google Scholar 

  • Dubuis, A., J. Pottier, V. Rion, L. Pellissier, J.-P. Theurillat & A. Guisan, 2011. Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions 17: 1122–1131.

    Article  Google Scholar 

  • Gauzere, P., F. Jiguet & V. Devictor, 2015. Rapid adjustment of bird community compositions to local climatic variations and its functional consequences. Global Change Biology 21: 3367–3378.

    Article  PubMed  Google Scholar 

  • Guisan, A. & C. Rahbek, 2011. SESAM – a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography 38: 1433–1444.

    Article  Google Scholar 

  • Guisan, A. & W. Thuiller, 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993–1009.

    Article  Google Scholar 

  • Guisan, A. & N. E. Zimmermann, 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186.

    Article  Google Scholar 

  • Hawkins, B. A., R. Field, H. V. Cornell, D. J. Currie, J.-F. Guégan, D. M. Kaufman, J. T. Kerr, G. G. Mittelbach, T. Oberdorff, E. M. O’brien, E. E. Porter & J. R. G. Turner, 2003. Energy, water, and broad-scale geographic patetrns in species richness. Ecology 84: 3105–3117.

    Article  Google Scholar 

  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.

    Article  Google Scholar 

  • Hondzo, M. & H. G. Stefan, 1991. Three case studies of lake temperature and stratification response to warmer climate. Water Resources Research 27: 1837–1846.

    Article  Google Scholar 

  • Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setala, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Article  Google Scholar 

  • Hooper, D. U., E. C. Adair, B. J. Cardinale, J. E. K. Byrnes, B. A. Hungate, K. L. Matulich, A. Gonzalez, J. E. Duffy, L. Gamfeldt & M. I. O’Connor, 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486: 105–108.

    CAS  PubMed  Google Scholar 

  • IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Jackson, D. A. & H. H. Harvey, 1989. Biogeographic associations in fish assemblages: local vs regional processes. Ecology 70: 1472–1484.

    Article  Google Scholar 

  • Jackson, D. A. & N. E. Mandrak (eds), 2002. Changing Fish Biodiversity: Predicting the Loss of Cyprinid Biodiversity Due to Global Climate Change. American Fisheries Society, Bethesda, MD.

    Google Scholar 

  • Jaeger, K. L., J. D. Olden & N. A. Pelland, 2014. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proceedings of the National Academy of Sciences 111: 13894–13899.

    Article  CAS  Google Scholar 

  • James, F. C., 1970. Geographic size variation in birds and its relationship to climate. Ecology 51: 365–390.

    Article  Google Scholar 

  • Koenigstein, S., F. C. Mark, S. Gößling-Reisemann, H. Reuter & H.-O. Poertner, 2016. Modelling climate change impacts on marine fish populations: process-based integration of ocean warming, acidification and other environmental drivers. Fish and Fisheries 17: 972–1004.

    Article  Google Scholar 

  • Laliberte, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    Article  PubMed  Google Scholar 

  • Magnuson, J. J., J. D. Meisner & D. K. Hill, 1990. Potential changes in the thermal habitat of great lakes fish after global climate warming. Transactions of the American Fisheries Society 119: 254–264.

    Article  Google Scholar 

  • Magnuson, J. J., T. K. Kratz, T. F. Allen, D. E. Armstrong, B. J. Benson, C. J. Bowser, D. W. Bolgrien, S. R. Carpenter, T. M. Frost, S. T. Gower, T. M. Lillesand, J. A. Pike & M. G. Turner, 1997. Regionalization of long-term ecological research (LTER) on north temperate lakes. International Association of Theoretical and Applied Limnology 26(Pt 2 26): 522–528.

  • Melles, S. J., C. Chu, K. M. Alofs & D. A. Jackson, 2015. Potential spread of Great Lakes fishes given climate change and proposed dams: an approach using circuit theory to evaluate invasion risk. Landscape Ecology 30: 919–935.

    Article  Google Scholar 

  • Menéndez, R., A. G. Megías, J. K. Hill, B. Braschler, S. G. Willis, Y. Collingham, R. Fox, D. B. Roy & C. D. Thomas, 2006. Species richness changes lag behind climate change. Proceedings of the Royal Society of London B: Biological Sciences 273: 1465–1470.

    Article  Google Scholar 

  • Millennium-Ecosystem-Assessment, 2005. Ecosystems and Human Well-being: Policy Responses. Island Press, Washington, DC.

    Google Scholar 

  • Mokany, K., J. J. Thomson, A. J. J. Lynch, G. J. Jordan & S. Ferrier, 2015. Linking changes in community composition and function under climate change. Ecological Applications 25: 2132–2141.

    Article  PubMed  Google Scholar 

  • Mokany, K., S. Ferrier, S. R. Connolly, P. K. Dunstan, E. A. Fulton, M. B. Harfoot, T. D. Harwood, A. J. Richardson, S. H. Roxburgh, J. P. W. Scharlemann, D. P. Tittensor, D. A. Westcott & B. A. Wintle, 2016. Integrating modelling of biodiversity composition and ecosystem function. Oikos 125: 10–19.

    Article  Google Scholar 

  • Mouillot, D., S. Villéger, V. Parravicini, M. Kulbicki, J. E. Arias-González, M. Bender, P. Chabanet, S. R. Floeter, A. Friedlander, L. Vigliola & D. R. Bellwood, 2014. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences 111: 13757–13762.

    Article  CAS  Google Scholar 

  • Nelson, E. J., P. Kareiva, M. Ruckelshaus, K. Arkema, G. Geller, E. Girvetz, D. Goodrich, V. Matzek, M. Pinsky, W. Reid, M. Saunders, D. Semmens & H. Tallis, 2013. Climate change’s impact on key ecosystem services and the human well-being they support in the US. Frontiers in Ecology and the Environment 11: 483–493.

    Article  Google Scholar 

  • Nock, C. A., R. J. Vogt & B. E. Beisner, 2016. Functional Traits. In eLS. Wiley.

  • Oliver, T. H., M. S. Heard, N. J. B. Isaac, D. B. Roy, D. Procter, F. Eigenbrod, R. Freckleton, A. Hector, C. D. L. Orme, O. L. Petchey, V. Proença, D. Raffaelli, K. B. Suttle, G. M. Mace, B. Martín-López, B. A. Woodcock & J. M. Bullock, 2015a. Biodiversity and resilience of ecosystem functions. Trends in Ecology & Evolution 30: 673–684.

    Article  Google Scholar 

  • Oliver, T. H., N. J. B. Isaac, T. A. August, B. A. Woodcock, D. B. Roy & J. M. Bullock, 2015b. Declining resilience of ecosystem functions under biodiversity loss. Nat Communications 6: 10122.

    Article  Google Scholar 

  • O’reilly, C. M., S. Sharma, D. K. Gray, S.E. Hampton, J. S. Read, R. J. Rowley, P. Schneider, J. D. Lenters, P. B. Mcintyre, B. M. Kraemer, G. A. Weyhenmeyer, D. Straile, B. Dong, R. Adrian, M. G. Allan, O. Anneville, L. Arvola, J. Austin, J. L. Bailey, J. S. Baron, J. D. Brookes, E. De Eyto, M.T. Dokulil, D. P. Hamilton, K. Havens, A. L. Hetherington, S. N. Higgins, S. Hook, L. R. Izmest’eva, K. D. Joehnk, K. Kangur, P. Kasprzak, M. Kumagai, E. Kuusisto, G. Leshkevich, D. M. Livingstone, S. Macintyre, L. May, J. M. Melack, D. C. Mueller-Navarra, M. Naumenko, P. Noges, T. Noges, R. P. North, P.-D. Plisnier, A. Rigosi, A. Rimmer, M. Rogora, L. G. Rudstam, J. A. Rusak, N. Salmaso, N. R. Samal, D.E. Schindler, S. G. Schladow, M. Schmid, S. R. Schmidt, E. Silow, M. E. Soylu, K. Teubner, P. Verburg, A. Voutilainen, A. Watkinson, C. E. Williamson & G. Zhang, 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42: 10773–10781.

  • Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Sagarin, R. D., J. P. Barry, S. E. Gilman & C. H. Baxter, 1999. Climate-related change in an intertidal community over short and long time scales. Ecological Monographs 69: 465–490.

    Article  Google Scholar 

  • Sandstrom, S., M. Rawson & N. Lester, 2010. Manual of Instructions for Broad-scale Fish Community Monitoring; using Large Mesh Gillnets and Small Mesh Gillnets. 34. In: O.M.O.N. Resources (ed.), Peterborough, ON.

  • Sharma, S. & D. A. Jackson, 2008. Predicting smallmouth bass (Micropterus dolomieu) occurrence across North America under climate change: a comparison of statistical approaches. Canadian Journal of Fisheries and Aquatic Sciences 65: 471–481.

    Article  Google Scholar 

  • Sharma, S., D. A. Jackson, C. K. Minns & B. J. Shuter, 2007. Will northern fish populations be in hot water because of climate change? Global Change Biology 13: 2052–2064.

    Article  Google Scholar 

  • Sharma, S., D. A. Jackson & C. K. Minns, 2009. Quantifying the potential effects of climate change and the invasion of smallmouth bass on native lake trout populations across Canadian lakes. Ecography 32: 517–525.

    Article  Google Scholar 

  • Sharma, S., M. J. Vander Zanden, J. J. Magnuson & J. Lyons, 2011. Comparing Climate Change and Species Invasions as Drivers of Coldwater Fish Population Extirpations. Plos One 6: e22906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan, J. A. & D. Bickford, 2011. Shrinking body size as an ecological response to climate change. Nature Climate Change 1: 401–406.

    Article  Google Scholar 

  • Shuter, B. J., J. A. Maclean, F. E. J. Fry & H. A. Regier, 1980. Stochastic simulation of temperature effects on first-year survival of smallmouth bass. Transactions of the American Fisheries Society 109: 1–34.

    Article  Google Scholar 

  • Simpson, S. D., S. Jennings, M. P. Johnson, J. L. Blanchard, P.-J. Schön, D. W. Sims & M. J. Genner, 2011. Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Current Biology 21: 1565–1570.

    Article  CAS  PubMed  Google Scholar 

  • Sumaila, U. R., W. W. L. Cheung, V. W. Y. Lam, D. Pauly & S. Herrick, 2011. Climate change impacts on the biophysics and economics of world fisheries. Nature Climate Change 1: 449–456.

    Article  Google Scholar 

  • Thuiller, W., S. Pironon, A. Psomas, M. Barbet-Massin, F. Jiguet, S. Lavergne, P. B. Pearman, J. Renaud, L. Zupan & N. E. Zimmermann, 2014. The European functional tree of bird life in the face of global change. Nature Communications 5: 3118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tonn, W. M. & J. J. Magnuson, 1982. Patterns in the species composition and richness of fish assemblages in Northern Wisconsin lakes. Ecology 63: 1149–1166.

    Article  Google Scholar 

  • Van Zuiden, T. M., M. M. Chen, S. Stefanoff, L. Lopez & S. Sharma, 2016. Projected impacts of climate change on three freshwater fishes and potential novel competitive interactions. Diversity and Distributions 22: 603–614.

    Article  Google Scholar 

  • Van Zuiden, T. M. & S. Sharma, 2016. Examining the effects of climate change and species invasions on Ontario walleye populations: can walleye beat the heat? Diversity and Distributions 22: 1069–1079.

    Article  Google Scholar 

  • Villéger, S., J. R. Miranda, D. F. Hernández & D. Mouillot, 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20: 1512–1522.

    Article  PubMed  Google Scholar 

  • Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116: 882–892.

    Article  Google Scholar 

  • Walther, G. R., 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B-Biological Sciences 365: 2019–2024.

    Article  PubMed Central  Google Scholar 

  • Wilson, J. B., 1990. Mechanisms of species coexistence: tweleve explanations for Hutchinson’s paradox of the plankton: evidence from New Zealand plant communities. New Zealand Journal of Ecology 13: 17–42.

    Google Scholar 

  • Zurell, D., N. E. Zimmermann, T. Sattler, M. P. Nobis & B. Schröder, 2016. Effects of functional traits on the prediction accuracy of species richness models. Diversity and Distributions 22: 905–917.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer.

Download references

Acknowledgements

We thank Ontario Ministry of Natural Resources for the fish data; Thomas Van Zuiden and Miranda Chen for the climate data; Saiful Khan for the map of the study area; and John Magnuson, Begoña Santos and two anonymous reviewers for valuable comments on an earlier version of this manuscript. Funding for this research was provided by Natural Sciences and Engineering Research Council Canada Discovery Grant to SS and York University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shekhar R. Biswas.

Additional information

Communicated by Handling editor: Begoña Santos

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 930 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S.R., Vogt, R.J. & Sharma, S. Projected compositional shifts and loss of ecosystem services in freshwater fish communities under climate change scenarios. Hydrobiologia 799, 135–149 (2017). https://doi.org/10.1007/s10750-017-3208-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3208-1

Keywords

Navigation