Skip to main content

Advertisement

Log in

Effects of black mangrove Avicennia germinans expansion on salt marsh nekton assemblages before and after a flood

  • MANGROVES IN CHANGING ENVIRONMENTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Climate change is facilitating black mangrove Avicennia germinans (L.) encroachment into Gulf of Mexico (GOM) estuaries, where mangroves are displacing Spartina alterniflora (Loisel) and other marsh plants. Western GOM estuaries have low tidal exchange, and salinity ranges from 0 to >50 ppt depending upon rainfall. Besides promoting expansion of tropical species into the GOM, climate change will likely affect salinity by making droughts more intense and storms and flooding more severe. We investigated the combined effects of A. germinans encroachment and salinity changes on associated nekton. In the spring and fall of 2014, nekton communities were significantly different and organisms significantly less abundant in wetlands dominated by A. germinans, even when S. alterniflora remained abundant. In spring 2015, flooding and reduced salinity obscured this trend, although in fall 2015 salinity increased, and organisms were again more abundant in areas without A. germinans. Thus, climate change can have significant effects on the distribution of wetland foundation species and associated faunal community structure, but, ultimately, precipitation and changes in salinity regimes can override the influence of foundation species on fauna. Climate change may alter the faunal composition of coastal wetlands by facilitating shifts in foundation species and by altering precipitation and salinity regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angradi, T. R., S. M. Hagan & K. W. Able, 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh: phragmites vs Spartina. Wetlands 21: 75–92.

    Article  Google Scholar 

  • Armitage, A., W. Highfield, S. Brody & P. Louchouarn, 2015. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast. PLoS ONE 10: 1–17.

    Article  Google Scholar 

  • Bianchi, T. S., M. A. Allison, J. Zhao, X. Li, R. S. Comeaux, R. A. Feagin & R. W. Kulawardhana, 2013. Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science 119: 7–16.

    Article  CAS  Google Scholar 

  • Boesch, D. F. & R. E. Turner, 1984. Dependence of fishery species on salt marshes: the role of food and refuge. Estuaries 7(4A): 460–468.

    Article  Google Scholar 

  • Carr, S. D., J. L. Hench, R. A. Luettich & R. B. Forward, 2005. Spatial patterns in the ovigerous Callinectes sapidus spawning migration: results from a coupled behavioral-physical model. Marine Ecology Progress Series 294: 213–226.

    Article  Google Scholar 

  • Cavanaugh, K. C., J. R. Kellner, A. J. Forde, D. S. Gruner, J. D. Parker, W. Rodriguez & I. C. Feller, 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences 111: 723–727.

    Article  CAS  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Comeaux, R. S., M. A. Allison & T. S. Bianchi, 2012. Mangrove expansion in the Gulf of Mexico with climate change: Implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science 96: 81–95.

    Article  CAS  Google Scholar 

  • Cuddington, K., J. Byers, W. Wilson & A. Hastings, 2007. Ecosystem Engineers: Plants to Protists., Theoretical Ecology Series Academic Press, San Diego, CA.

    Google Scholar 

  • Diskin, M.S., 2016. Effects of black mangrove (Avicennia germinans) expansion on salt marsh fauna in south Texas before and after a major flooding event. MS Thesis. Texas A&M University—Corpus Christi, Texas, USA.

  • Doughty, C.L., J.A. Langley, W.S. Walker, I.C. Feller, R. Schaub & S.K. Chapman, 2016. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries and Coasts 39: 385–396.

    Article  CAS  Google Scholar 

  • Dunton, K.H., B. Hardegree & T.E. Whitledge, 2001. Response of estuarine marsh vegetation to interannual variations in precepitation. Estuaries 24: 851–861.

    Article  Google Scholar 

  • Ellison, A. M., M. S. Bank, B. D. Clinton, E. A. Colburn, K. Elliott, C. R. Ford, D. R. Foster, B. D. Kloeppel, J. D. Knoepp, G. M. Lovett, J. Mohan, D. A. Orwig, N. L. Rodenhouse, W. V. Sobczak, K. A. Stinson, J. K. Stone, C. M. Swan, J. Thompson, B. Von Holle & J. R. Webster, 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment 3(9): 479–486.

    Article  Google Scholar 

  • Forbes, M. G. & K. H. Dunton, 2006. Response of a subtropical estuarine marsh to local climatic change in the southwestern Gulf of Mexico. Estuaries and Coasts 29: 1242–1254.

    Article  Google Scholar 

  • Guo, H. Y., Y. H. Zhang, Z. J. Lan & S. C. Pennings, 2013. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change. Global Change Biology 19(9): 2765–2774.

    Article  PubMed  Google Scholar 

  • Hill, B. J., M. J. Williams & P. Dutton, 1982. Distribution of juvenile, subadult and adult Scylla serrate (Crustacea: Portunidate) on tidal flats in Australia. Marine Biology 69: 117–120.

    Article  Google Scholar 

  • Jueterbock, A., L. Tyberghein, H. Verbruggen, J. A. Coyer, J. L. Olsen & G. Hoarau, 2013. Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecology and Evolution 3(5): 1356–1373.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kathiresan, K. & N. Rajendran, 2005. Coastal mangrove forests mitigated tsunami. Estuarine Coastal and Shelf Science. 65(3): 601–606.

    Article  Google Scholar 

  • Lunt, J., K. McGlaun & E. Robinson, 2013. Effects of black mangrove (Avicennia germinans) expansion on salt marsh (Spartina alterniflora) benthic communities of the south Texas coast. Gulf and Caribbean Research 25: 125–129.

    Article  Google Scholar 

  • Meyer, D., J. Johnson & J. Gill, 2001. Comparison of nekton use of Phragmites australis and Spartina alterniflora marshes in the Chesapeake Bay, USA. Marine Ecology Progress Series 209: 71–84.

    Article  Google Scholar 

  • Micheli, F., M. J. Bishop, C. H. Peterson & J. Rivera, 2008. Alteration of seagrass species composition and function over two decades. Ecological Monographs 78(2): 225–244.

    Article  Google Scholar 

  • Montagna, P. A., J. Brenner, J. Gibeaut & S. Morehead, 2011. Coastal impacts. In Schmandt, J., G. R. North & J. Clarkson (eds), The Impact of Global Warming on Texas, 2nd ed. University of Texas Press, Austin, TX: 96–123.

    Google Scholar 

  • Mumby, P. J., J. E. Alasdair, J. E. Arias-González, K. C. Lindeman, P. G. Blackwell, A. Gall, M. I. Gorczynska, A. R. Harborne, C. L. Pescod, H. Renken, C. C. C. Wabnitz & G. Llewellyn, 2004. Mangroves enhance the biomass of coral reef fish communities in the Caaribbean. Nature 427: 533–536.

    Article  CAS  PubMed  Google Scholar 

  • Osland, M. J., N. Enwright, R. H. Day & T. W. Doyle, 2013. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Global Change Biology 19(5): 1482–1494.

    Article  PubMed  Google Scholar 

  • Osland, M. J., N. Enwright & C. L. Stagg, 2014. Freshwater availability and coastal wetland foundation species: ecological transitions along a rainfall gradient. Ecology 95: 2789–2802.

    Article  Google Scholar 

  • Osland, M. J., N. M. Enwright, R. H. Day, C. A. Gabler, C. L. Stagg & J. B. Grace, 2016. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Global Change Biology 22: 1–11.

    Article  PubMed  Google Scholar 

  • Odum, E.P., 1968. A research challenge: evaluating the productivity of coastal and estuarine water. Proceedings of the Second Sea Grant Conference, University of Rhode Island, Kingstone, Rhode Island, USA.

  • Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Perry, C. L. & I. A. Mendelssohn, 2009. Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29(1): 396–406.

    Article  Google Scholar 

  • Peterson, J. M. & S. S. Bell, 2012. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across an ecotone. Ecology 93(7): 1648–1658.

    Article  PubMed  Google Scholar 

  • Pollack, J. B., H. C. Kim, E. K. Morgan & P. A. Montagna, 2011. Role of flood disturbance in natural oyster (Crassostrea depressa) population maintenance in an estuary in South Texas, USA. Estuaries and Coasts 34: 187–197.

    Article  CAS  Google Scholar 

  • Ray, B. R., M. W. Johnson, K. Cammarata & D. L. Smee, 2014. Changes in seagrass species composition in northwestern Gulf of Mexico estuaries: effects on associated seagrass fauna. PLoS ONE 9(9): 1–12.

    Article  Google Scholar 

  • Saintilan, N., N. C. Wilson, K. Rogers, A. Rajkaran & K. W. Krauss, 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20(1): 147–157.

    Article  PubMed  Google Scholar 

  • Smee, D. L., J. A. Sanchez, M. S. Diskin & C. Trettin, 2017. Mangrove expansion into salt marshes alters associated faunal communities. Estuarine Coastal Shelf Science 187: 306–313.

    Article  Google Scholar 

  • Stuart, S. A., B. Choat, K. C. Martin, N. M. Holbrook & M. C. Ball, 2007. The role of freezing in setting the latitudinal limits of mangrove forests. New Phytologist 173(3): 576–583.

    Article  CAS  PubMed  Google Scholar 

  • Sturm, M., C. Racine & K. Tape, 2001. Climate change: increasing shrub abundance in the Arctic. Nature 411: 546–547.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K., S. Taino, H. Haraguchi, G. Prendergast & M. Hiraoka, 2012. Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecology and Evolution 2: 2854–2865.

    Article  PubMed  PubMed Central  Google Scholar 

  • Valiela, I. & L. Cole, 2002. Comparitive evidence that salt marshes and mangroves may protect sea grass meadowes from land-derived nitrogen loads. Ecosystems 5: 92–102.

    Article  Google Scholar 

  • Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg & F. Bairlein, 2002. Ecological responses to recent climate change. Nature 416: 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Wassenberg, T. J. & B. J. Hill, 1993. Diet and feeding behavior of juvenile and adult banana prawns Penaeus merguiensis in the Gulf of Carpentaria, Australia. Marine Ecology Progress Series 94: 287–295.

    Article  Google Scholar 

  • Yando, E. S., M. J. Osland, J. M. Willis, R. H. Day, K. W. Krauss & M. W. Hester, 2016. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools. Journal of Ecology 104: 1020–1031.

    Article  CAS  Google Scholar 

  • Zimmerman, R.J., T.J. Minello, & G. Zamora., 1984. Selection of vegetated habitat by brown shrimp, Penaeus aztecus, in a Galveston Bay salt marsh. Fishery Bulletin (U.S.) 82: 325–336.

    Google Scholar 

Download references

Acknowledgements

Funding was provided by the USDA Forest Service Southern Research Station Agreements 12-DG-11330101-096 and 13-CA-11330140-116 to D.L. Smee. The NSF-MSP ETEAMS Grant #1321319 provided funding for boat time and their interns assisted in the field. Members of the Marine Ecology Lab including J. Lunt, J. Reustle, and A. Scherer, and C. Trettin, J. Arnold, and C. Stringer from USFS provided important assistance in the field. S. Bock was instrumental for writing and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delbert L. Smee.

Additional information

Guest editors: K. W. Krauss, I. C. Feller, D. A. Friess & R. R. Lewis III / Causes and Consequences of Mangrove Ecosystem Responses to an Ever-Changing Climat

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diskin, M.S., Smee, D.L. Effects of black mangrove Avicennia germinans expansion on salt marsh nekton assemblages before and after a flood. Hydrobiologia 803, 283–294 (2017). https://doi.org/10.1007/s10750-017-3179-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3179-2

Keywords

Navigation