Skip to main content
Log in

Non-additive effects of dispersal and selective stress on structure, evenness, and biovolume production in marine diatom communities

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Changes in environmental conditions can impose stress that alters the structure and function of communities. However, ecologists are only starting to explore how stress can interact with dispersal. In this study, we tested how dispersal affects the structure, diversity (evenness), and function (productivity) of marine diatom communities (Bacillariophyceae) exposed to herbicide stress using a mainland-island framework. In a microcosm experiment, we manipulated the sequence (5 levels) and speed (two dispersal levels) of species arrival under no-stress conditions and two levels of stress. When stress was absent or low, priority effects regulated community dynamics, keeping the densities of new arrivers low. Consequently, evenness was lower in dispersed than in non-dispersed communities. Moreover, because of strong local interactions, dispersal decreased productivity under no-stress conditions and low stress. Under high stress, the selection for tolerant species regulated community dynamics. This generated a decrease in evenness but buffered productivity by compensating for the loss of sensitive species. Our results show that (1) dispersal reduced evenness, but that underlying mechanisms depend on the stress-level, and (2) dispersal can function as a spatial insurance against local changes in environmental conditions. Accounting for regional processes is therefore essential for estimating the consequences of environmental changes for ecosystem functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen, R. A., 2005. Algal Culturing Techniques. Elsevier Academic Press, London.

    Google Scholar 

  • Beketov, M. A., B. J. Kefford, R. B. Schäfer & M. Liess, 2013. Pesticides reduce regional biodiversity of stream invertebrates. Proceedings of the National Academy of Sciences of the United States of America 110: 11039–11043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooker, R. W., F. T. Maestre, R. M. Callaway, C. L. Lortie, L. A. Cavieres, G. Kunstler, P. Liancourt, K. Tielbörger, J. M. J. Travis, F. Anthelme, C. Armas, L. Coll, E. Corcket, S. Delzon, E. Forey, Z. Kikvidze, J. Olofsson, F. Pugnaire, C. L. Quiroz, P. Saccone, K. Schiffers, M. Seifan, B. Touzard & R. Michalet, 2008. Facilitation in plant communities: the past, the present, and the future. Journal of Ecology 96: 18–34.

    Article  Google Scholar 

  • Bruno, J. F., S. C. Lee, J. S. Kertesz, R. C. Carpenter, Z. T. Long & J. E. Duffy, 2006. Partitioning the effects of algal species identity and richness on benthic marine primary production. Oikos 115: 170–178.

    Article  Google Scholar 

  • Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. Mace, D. Tilman, D. A. Wardle, A. P. Kinzig, G. C. Daily, M. Loreau, J. B. Grace, A. Larigauderie, D. S. Srivastava & S. Naeem, 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Cardinale, B. J., K. E. Ross, K. E. F. Ritschie, P. E. F. Lombaum, J. E. W. F. Ox, C. H. R. Ixen, J. A. V. A. N. R. Uijven, P. E. B. R. Eich, M. I. S. C. Orenzen & B. R. J. W. Ilsey, 2013. Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent. Ecology 94: 1697–1707.

    Article  PubMed  Google Scholar 

  • Chase, J. M., 2003. Community assembly: when should history matter? Oecologia 136: 489–498.

    Article  PubMed  Google Scholar 

  • Chase, J. M., 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences of the United States of America 104: 17430–17434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesson, P., 2000. Mechanisms of Maintenance of Species Diversity. Annual Review of Ecology and Systematics 31: 343–366.

    Article  Google Scholar 

  • Cornell, H. V. & J. H. Lawton, 1992. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. Journal of Animal Ecology 61: 1–12.

    Article  Google Scholar 

  • Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.

    Article  PubMed  Google Scholar 

  • De Boeck, H. J., C. M. Lemmens, C. Zavalloni, B. Gielen, S. Malchair, M. Carnol, R. Merckx, J. Van den Berge, R. Ceulemans & I. Nijs, 2008. Biomass production in experimental grasslands of different species richness during three years of climate warming. Biogeosciences 5: 585–594.

    Article  Google Scholar 

  • de Boer, M. K., H. Moor, B. Matthiessen, H. Hillebrand & B. K. Eriksson, 2014. Dispersal restricts local biomass but promotes the recovery of metacommunities after temperature stress. Oikos 123: 762–768.

    Article  Google Scholar 

  • Drake, J. A., 1991. Community-Assembly Mechanics and the Structure of an Experimental Species Ensemble. The American Naturalist 137: 1–26.

    Article  Google Scholar 

  • Eggers, S. L., B. K. Eriksson & B. Matthiessen, 2012. A heat wave and dispersal cause dominance shift and decrease biomass in experimental metacommunities. Oikos 121: 721–733.

    Article  Google Scholar 

  • Flöder, S., S. Jaschinski, G. Wells & C. W. Burns, 2010. Dominance and compensatory growth in phytoplankton communities under salinity stress. Journal of Experimental Marine Biology and Ecology 395: 223–231.

    Article  Google Scholar 

  • Fox, J. W., 2005. Interpreting the selection effect of biodiversity on ecosystem function. Ecology Letters 8: 846–856.

    Article  Google Scholar 

  • Fukami, T., 2015. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual Review of Ecology Evolution and Systematics 46: 1–23.

    Article  Google Scholar 

  • Fukami, T. & P. J. Morin, 2003. Productivity – biodiversity relationships depend on the history of community assembly. Nature 424: 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Fukami, T. & M. Nakajima, 2011. Community assembly: alternative stable states or alternative transient states? Ecology letters 14: 973–984.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukami, T., I. A. Dickie, J. Paula Wilkie, B. C. Paulus, D. Park, A. Roberts, P. K. Buchanan & R. B. Allen, 2010. Assembly history dictates ecosystem functioning: Evidence from wood decomposer communities. Ecology Letters 13: 675–684.

    Article  PubMed  Google Scholar 

  • Guelzow, N., M. Dirks & H. Hillebrand, 2014. Effect of (a)synchronous light fluctuation on diversity, functional and structural stability of a marine phytoplankton metacommunity. Oecologia 176: 497–510.

    Article  PubMed  Google Scholar 

  • Guillard, R. R. L. & J. H. Ryther, 1962. Studies of marine plankton diatoms: I. Cyclotella Nana Hustedt, and Detinlua Confervacea (Cleve) Gran. Canadian Journal of Microbiology NRC Research Press 8: 229–239.

    Article  CAS  Google Scholar 

  • Hastings, A., 2004. Transients: the key to long-term ecological understanding? Trends in Ecology and Evolution 19: 39–45.

    Article  PubMed  Google Scholar 

  • Hector, A., C. Schmid, C. Beierkuhnlein, M. C. Caldeira, M. Diemer, P. G. Dimitrakopoulos, J. A. Finn, H. Freitas, P. S. Giller, J. Good, R. Harris, P. Hëgberg, K. Huss-danell, J. Joshi, A. Jumpponen, C. Kërner, P. W. Leadley, M. Loreau, A. Minns, C. P. H. Mulder, G. O’donovan, S. J. Otway, J. S. Pereira, A. Prinz, D. J. Read, M. Scherer-lorenzen, E. D. Schulze, A.-S. D. Siamantziouras, E. M. Spehn, A. C. Terry, A. Y. Troumbis, F. I. Woodward, S. Yachi & J. H. Lawton, 1999. Plant diversity and productivity experiments en European grasslands. Science 286: 1123–1127.

    Article  CAS  PubMed  Google Scholar 

  • Hill, T. C. J., K. A. Walsh, J. A. Harris & B. F. Mo, 2003. Using ecological diversity measures with bacterial communities. Microbiology Ecology 43: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & Tamar Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hillebrand, H., D. M. Bennett & M. W. Cadotte, 2008. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89: 1510–1520.

    Article  PubMed  Google Scholar 

  • Højsgaard, S., U. Halekoh & J. Yan, 2006. The R Package geepack for Generalized Estimating Equations. Journal of Statistical Software 15: 1–11.

    Google Scholar 

  • Ives, A. R., 1995. Predicting the response of populations to environmental change. Ecology 76: 926–941.

    Article  Google Scholar 

  • Kaiser, J., 2003. Sipping from a poisoned chalice. Science 302: 376–379.

    Article  CAS  PubMed  Google Scholar 

  • Knauert, S., U. Dawo, J. Hollender, U. Hommen & K. Knauer, 2009. Effects of photosystem II inhibitors and their mixture on freshwater phytoplankton succession in outdoor mesocosms. Environmental Toxicology and Chemistry 28: 836–845.

    Article  CAS  PubMed  Google Scholar 

  • Körner, C., J. Stöcklin, L. Reuther-thiébaud & S. Pelaez-riedl, 2008. Small differences in arrival time influence composition and productivity of plant communities. New Phytologist 177: 698–705.

    Article  PubMed  Google Scholar 

  • Law, R. & R. D. Morton, 1996. Permanence and the assembly of ecological communities. Ecology 77: 762–775.

    Article  Google Scholar 

  • Loreau, M. & A. Hector, 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412: 72–76.

    Article  CAS  PubMed  Google Scholar 

  • Loreau, M., N. Mouquet & A. Gonzalez, 2003. Biodiversity as spatial insurance in heterogeneous landscapes. Proceedings of the National Academy of Sciences of the United States of America 100: 12765–12770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaj, E., P. C. von der Ohe, M. Grote, R. Kühne, C. P. Mondy, P. Usseglio-Polatera, W. Brack & R. B. Schäfer, 2014. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proceedings of the National Academy of Sciences of the United States of America 111: 9549–9554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthiessen, B. & H. Hillebrand, 2006. Dispersal frequency affects local biomass production by controlling local diversity. Ecology letters 9: 652–662.

    Article  PubMed  Google Scholar 

  • Matthiessen, B., E. Mielke & U. Sommer, 2010. Dispersal decreases diversity in heterogeneous metacommunities by enhancing regional competition. Ecology 91: 2022–2033.

    Article  PubMed  Google Scholar 

  • May, R. M., 1974. Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton.

    Google Scholar 

  • Mensens, C., F. De Laender, C. R. Janssen, K. Sabbe & M. De Troch, 2015. Stressor-induced biodiversity gradients: revisiting biodiversity-ecosystem functioning relationships. Oikos 124: 677–684.

    Article  Google Scholar 

  • Naeem, S. & S. Li, 1997. Biodiversity enhances ecosystem reliability. Nature 390: 507–509.

    Article  CAS  Google Scholar 

  • Pimm, S. L., C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman, L. N. Joppa, P. H. Raven, C. M. Roberts & J. O. Sexton, 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344: 1246752.

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro, J., D. Bates, S. DebRoy & D. Darkar, 2014. Nlme: linear and nonlinear mixed effects models. R package version 3: 1–118.

    Google Scholar 

  • Pomati, F. & L. Nizzetto, 2013. Assessing triclosan-induced ecological and trans-generational effects in natural phytoplankton communities: a trait-based field method. Ecotoxicology 22: 779–794.

    Article  CAS  PubMed  Google Scholar 

  • Schmidtke, A., U. Gaedke & G. Weithoff, 2010. A mechanistic basis for underyielding in phytoplankton communities. Ecology 91: 212–221.

    Article  PubMed  Google Scholar 

  • Shulman, M. J., J. C. Ogden, J. P. Ebersole, W. N. Mcfarland, L. Miller, N. G. Wolf, S. Ecology & N. Dec, 1983. Priority effects in the recruitment of juvenile coral reef fishes. Ecology 64: 1508–1513.

    Article  Google Scholar 

  • Shurin, J. B., 2000. Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81: 3074–3086.

    Article  Google Scholar 

  • Steudel, B., A. Hector, T. Friedl, C. Löfke, M. Lorenz, M. Wesche, M. Kessler & M. Gessner, 2012. Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecology letters 15: 1397–1405.

    Article  PubMed  Google Scholar 

  • Symons, C. C. & S. E. Arnott, 2013. Regional zooplankton dispersal provides spatial insurance for ecosystem function. Global Change Biology 19: 1610–1619.

    Article  PubMed  Google Scholar 

  • Symons, C. C. & S. E. Arnott, 2014. Timing is everything: priority effects alter community invasibility after disturbance. Ecology and Evolution 4: 397–407.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson, P. L. & J. B. Shurin, 2012. Regional zooplankton biodiversity provides limited buffering of pond ecosystems against climate change. The Journal of animal ecology 81: 251–259.

    Article  PubMed  Google Scholar 

  • Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton.

    Google Scholar 

  • Tilman, D., 1994. Competition and biodiversity in spatially structured habitats. Ecology 75: 2–16.

    Article  Google Scholar 

  • Tilman, D., 1999. The ecological consequences of changes in biodiversity: perspectives. Ecology 80: 1455–1474.

    Google Scholar 

  • Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie & E. Siemann, 1997. The influence of functional diversity and composition on ecosystem processes. Science 277: 1300–1302.

    Article  CAS  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S. Springer, New York.

    Book  Google Scholar 

  • Viaene, K. P. J., F. De Laender, P. J. Van den Brink & C. R. Janssen, 2013. Using additive modelling to quantify the effect of chemicals on phytoplankton diversity and biomass. The Science of the total environment 449: 71–80.

    Article  CAS  PubMed  Google Scholar 

  • Vörösmarty, C. J., P. B. Mcintyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. J. Vo, C. A. Sullivan, C. R. Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 567: 555–561.

    Article  Google Scholar 

  • Yachi, S. & M. Loreau, 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences 96: 1463–1468.

    Article  CAS  Google Scholar 

  • Yan, J., 2002. geepack: yet Another Package for Generalized Estimating Equations. R-News 2: 12–14.

    Google Scholar 

  • Yan, J. & J. Fine, 2004. Estimating equations for association structures. Statistics in Medicine 23: 859–874.

    Article  PubMed  Google Scholar 

  • Zhang, Q. G. & D. Y. Zhang, 2007. Colonization sequence influences selection and complementarity effects on biomass production in experimental algal microcosms. Oikos 116: 1748–1758.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgments

J.D.R and J.M.B. are indebted to the Research Foundation Flanders (FWO) for their PhD research fellow grant (Grant Nos: FWO14/ASP/075 and FWO12/ASP/011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan De Raedt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Luigi Naselli-Flores

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Raedt, J., Baert, J.M., Janssen, C.R. et al. Non-additive effects of dispersal and selective stress on structure, evenness, and biovolume production in marine diatom communities. Hydrobiologia 788, 385–396 (2017). https://doi.org/10.1007/s10750-016-3016-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3016-z

Keywords

Navigation