Skip to main content
Log in

Salt in our streams: even small sodium additions can have negative effects on detritivores

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Large, pulsed sodium chloride (NaCl) additions can increase mortality of aquatic biota, but longer-term effects from low-level additions are less understood. Small ionic increases may alleviate sodium (Na) limitation or osmoregulatory stress, thereby increasing microbial respiration and macroinvertebrate consumption and growth. We manipulated NaCl levels in microcosms containing just sweetgum (Liquidambar styraciflua L.) leaves with associated microbes, or leaves, microbes, and one of two macroinvertebrate detritivores (Tipula abdominalis Say in Experiment I and Lirceus sp. in Experiment II). In Experiment I, microcosms had either ambient or elevated NaCl (3 or 7 mg Na l−1, respectively). Contrary to predictions, microbial respiration did not significantly differ between treatments after 4 weeks. However, after 2 weeks, T. abdominalis marginally decreased leaf consumption in elevated treatments without change in growth. Experiment II had three NaCl treatments: low (ambient), medium, and high (3, 14, and 140 mg Na l−1, respectively). After 6 weeks, microbial respiration averaged 15% lower in medium and 29% lower in high than in low treatments. Throughout, Lirceus sp. ate and grew similarly in low and medium treatments. However, Lirceus sp. growth was 12% slower in high than in low treatments. Lirceus sp. ate 74% more leaves in high than medium treatments, but growth and assimilation did not differ. Therefore, we infer possible osmoregulatory stress. Even low-level NaCl inputs may negatively impact some detritivores, which could alter stream processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barlocher, F., 1985. The role of fungi in the nutrition of stream macroinvertebrates. Botanical Journal of Linnean Society 91: 83–94.

    Article  Google Scholar 

  • Baxter, C. V., K. D. Fausch & W. C. Saunders, 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology 50: 201–220.

    Article  Google Scholar 

  • Benbow, M. E. & R. W. Merritt, 2004. Road-salt toxicity of select Michigan wetland macroinvertebrates under different testing conditions. Wetlands 24: 68–76.

    Article  Google Scholar 

  • Benke, A. C., 1993. Concepts and patterns of invertebrate production in running waters. Proceedings-International Association of Theoretical and Applied Limnology 25: 15.

    Google Scholar 

  • Birge, W. J., J. A. Black, A. G. Westerman, T. M. Short, S. B. Taylor, D. M. Bruser & E. D. Wallingford, 1985. Recommendations on numerical values for regulating iron and chloride concentrations for the purpose of protecting warmwater species of aquatic life in the commonwealth of Kentucky. School of Biological Sciences and Graduate Center for Toxicology, University of Kentucky, Kentucky Natural Resources and Environmental Protection Cabinet.

  • Blasius, B. J. & R. W. Merritt, 2002. Field and laboratory investigations on the effects of road salt (NaCl) on stream macroinvertebrate communities. Environmental Pollution 120: 219–231.

    Article  CAS  PubMed  Google Scholar 

  • Bordalo, A. A., 1993. The effects of salinity on bacterioplankton; field and microcosm experiments. The Journal of Applied Bacteriology 75: 393–398.

    Article  Google Scholar 

  • Brooks, S. J., D. Platvoet & C. L. Mills, 2008. Cation regulation and alteration of water permeability in the amphipod Dikerogammarus villosus: an indicator of invasion potential. Fundamental and Applied Limnology/Archiv für Hydrobiologie 172: 183–189.

    Article  CAS  Google Scholar 

  • Brose, U., R. J. Williams & N. D. Martinez, 2006. Allometric scaling enhances stability in complex food webs. Ecology Letters 9: 1228–1236.

    Article  PubMed  Google Scholar 

  • Burke, V. & L. A. Baird, 1931. Fate of fresh water bacteria in the sea. Journal of Bacteriology 21: 287.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Camp, A. A., D. H. Funk & D. B. Buchwalter, 2014. A stressful shortness of breath: molting disrupts breathing in the mayfly Cloeon dipterum. Freshwater Science 33: 695–699.

    Article  Google Scholar 

  • Cañedo-Argüelles, M., M. Bundschuh, C. Gutiérrez-Cánovas, B. J. Kefford, N. Prat, R. Trobajo & R. B. Schäfer, 2014. Effects of repeated salt pulses on ecosystem structure and functions in a stream mesocosm. Science of the Total Environment 476–477: 634–642.

    Article  PubMed  Google Scholar 

  • Cañedo-Argüelles, M., M. Sala, G. Peixoto, N. Prat, M. Faria, A. M. Soares, C. Barata & B. Kefford, 2016. Can salinity trigger cascade effects on streams? A mesocosm approach. Science of the Total Environment 540: 3–10.

    Article  PubMed  Google Scholar 

  • Cardinale, B. J., D. S. Srivastava, J. E. Duffy, J. P. Wright, A. L. Downing, M. Sankaran & C. Jouseau, 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443: 989–992.

    Article  CAS  PubMed  Google Scholar 

  • Chadwick, M. A., D. R. Dobberfuhl, A. C. Benke, A. D. Huryn, K. Suberdropp & J. E. Thiele, 2006. Urbanization affects stream ecosystem functions by altering hydrology, chemistry, and biotic richness. Ecological Applications 16: 1796–1807.

    Article  PubMed  Google Scholar 

  • Clay, N. A., S. P. Yanoviak & M. Kaspari, 2014. Short-term sodium inputs attract microbi-detritivores and their predators. Soil Biology and Biochemistry 75: 248–253.

    Article  CAS  Google Scholar 

  • Collins, S. J. & R. W. Russell, 2009. Toxicity of road salt to Nova Scotia amphibians. Environmental Pollution 157: 320–324.

    Article  CAS  PubMed  Google Scholar 

  • Cook, L. J. & S. N. Francoeur, 2013. Effects of simulated short-term road salt exposure on lotic periphyton function. Journal of Freshwater Ecology 28: 211–223.

    Article  Google Scholar 

  • Cummins, K. W., 1973. Trophic relations of aquatic insects. Annual Review of Entomology 18: 183–206.

    Article  Google Scholar 

  • Davis, J. M., A. D. Rosemond, S. L. Eggert, W. F. Cross & J. B. Wallace, 2010. Nutrient enrichment differentially affects body sizes of primary consumers and predators in a detritus-based stream. Limnology and Oceanography 55: 2305–2316.

    Article  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, D. J. Knowler, C. Leveque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81: 163–182.

    Article  PubMed  Google Scholar 

  • Duncan, R. A., M. G. Bethune, T. Thayalakumaran, E. W. Christen & T. A. McMahon, 2008. Management of salt mobilisation in the irrigated landscape-a review of selected irrigation regions. Journal of Hydrology 351: 238–252.

    Article  Google Scholar 

  • EIA, 2011. Annual Energy Outlook. Energy Information Administration. United States Department of Energy, Washington, D.C.

    Google Scholar 

  • El-Ashry, M. T., J. van Schilfgaarde & S. Schiffman, 1985. Salinity pollution from irrigated agriculture. Journal of Soil and Water Conservation 40: 48–52.

    Google Scholar 

  • Emmerson, M. C. & D. Raffaelli, 2004. Predator-prey body size, interaction strength and the stability of a real food web. Journal of Animal Ecology 73: 399–409.

    Article  Google Scholar 

  • Ferreira, V., V. Gulis & M. A. S. Graça, 2006. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149: 718–729.

    Article  PubMed  Google Scholar 

  • Freitas, E. C. & O. Rocha, 2011. Acute and chronic effects of sodium and potassium on the tropical freshwater cladoceran Pseudosida ramosa. Ecotoxicology 20: 88–96.

    Article  CAS  PubMed  Google Scholar 

  • Fuller, C. L., M. A. Evans-White & S. A. Entrekin, 2015. Growth and stoichiometry of a common aquatic detritivore respond to changes in resource stoichiometry. Oecologia 177: 837–848.

    Article  PubMed  Google Scholar 

  • Gleick, P. H., 1996. Basic water requirements for human activities: meeting basic needs. Water International 21: 83–92.

    Article  Google Scholar 

  • Goetsch, P. A. & C. G. Palmer, 1997. Salinity tolerances of selected macroinvertebrates of the Sabie River, Kruger National Park, South Africa. Archives of Environmental Contamination and Toxicology 32: 32–41.

    Article  CAS  PubMed  Google Scholar 

  • Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams - a review. International Review of Hydrobiology 86: 383–393.

    Article  Google Scholar 

  • Graça, M. A. S., R. C. F. Ferreira & C. N. Coimbra, 2001. Litter processing along a stream gradient: the role of invertebrates and decomposers. Journal of the North American Benthological Society 20: 408–420.

    Article  Google Scholar 

  • Griffith, M. B., 2014. Natural variation and current reference for specific conductivity and major ions in wadeable streams of the conterminous USA. Freshwater Science 33: 1–17.

    Article  Google Scholar 

  • Gulis, V. & K. Suberkropp, 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology 48: 123–134.

    Article  Google Scholar 

  • Hagen, E. M., J. R. Webster & E. F. Benfield, 2006. Are leaf breakdown rates a useful measure of stream integrity along an agricultural landuse gradient? Journal of the North American Benthological Society 25: 330–343.

    Article  Google Scholar 

  • Hall, R. O., J. B. Wallace & S. L. Eggert, 2000. Organic matter flow in stream food webs with reduced detrital resource base. Ecology 81: 3445–3463.

    Article  Google Scholar 

  • Hart, B. T., P. Bailey, R. Edwards, K. Hortle, K. James, A. McMahon, C. Meredith & K. Swadling, 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210: 105–144.

    Article  Google Scholar 

  • Hassell, K. L., B. J. Kefford & D. Nugegoda, 2006. Sub-lethal and chronic salinity tolerances of three freshwater insects: Cloeon sp. and Centroptilum sp. (Ephemeroptera: Baetidae) and Chironomus sp. (Diptera: Chironomidae). Journal of Experimental Biology 209: 4024–4032.

    Article  PubMed  Google Scholar 

  • Johnson, B. R., P. C. Weaver, C. T. Nietch, J. M. Lazorchak, K. A. Struewing & D. H. Funk, 2015. Elevated major ion concentrations inhibit larval mayfly growth and development. Environmental Toxicology and Chemistry 34: 167–172.

    Article  CAS  PubMed  Google Scholar 

  • Kaspari, M., S. P. Yanoviak, R. Dudley, M. Yuan & N. A. Clay, 2009. Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest. Proceedings of the National Academy of Sciences of the United States of America 106: 19405–19409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushal, S. S., P. M. Groffman, G. E. Likens, K. T. Belt, W. P. Stack, V. R. Kelly, L. E. Band & G. T. Fisher, 2005. Increased salinization of fresh water in the northeastern United States. Proceedings of the National Academy of Sciences of the United States of America 102: 13517–13520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kefford, B. J., P. J. Papas, L. Metzeling & D. Nugegoda, 2004. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity? Environmental Pollution 129: 355–362.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, V. R., G. M. Lovett, K. C. Weathers, S. Findlay, D. Strayer, D. J. Burns & G. E. Likens, 2008. Long-term sodium chloride retention in a rural watershed: legacy effects of road salt on streamwater concentration. Environmental Science and Technology 42: 410–415.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, W. S. & M. Grosell, 2006. Ion transport, osmoregulation, and acid-base balance. The physiology of fishes 3: 177–230.

    Google Scholar 

  • Moore, D. J., R. H. Reed & D. P. Stewart, 1985. Responses of Cyanobacteria to low level osmotic stress: implications for the use of buffers. Microbiology 131: 1267–1272.

    Article  CAS  Google Scholar 

  • Musto, A. L., 2013. Trace elements and macroinvertebrate community structure across a gradient of shale gas extraction. University of Central Arkansas.

  • Nimiroski, M. T. & M. C. Waldren, 2002. Sources of sodium and chloride in the Scituate Reservoir drainage, Rhode Island. US Department of the Interior, US Geological Survey.

  • Odum, E. P., J. T. Finn & E. H. Franz, 1979. Perturbation theory and the subsidy-stress gradient. Bioscience 29: 349–352.

    Article  Google Scholar 

  • Olmstead, S. M., L. A. Muehlenbachs, J. S. Shih, Z. Y. Chu & A. J. Krupnick, 2012. Shale gas development impacts on surface water quality in Pennsylvania. Proceedings of the National Academy of Sciences of the United States of America 110: 4962–4967.

    Article  Google Scholar 

  • Raven, J. A., 1982. The energetics of freshwater algae; energy requirements for biosynthesis and volume regulation. New Phytologist 92: 1–20.

    Article  Google Scholar 

  • Rose, S., 2007. The effects of urbanization on the hydrochemistry of base flow within the Chattahoochee River Basin (Georgia, USA). Journal of Hydrology 341: 42–54.

    Article  Google Scholar 

  • Rossi, L., E. A. Fano & A. Basset, 1983. Sympatric coevolution of the trophic niche of two detrivorous isopods, Asellus aquaticus and Proasellus coxalis. Oikos 40: 208–215.

    Article  Google Scholar 

  • Scheibener, S. A., V. S. Richardi & D. B. Buchwalter, 2015. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects. Aquatic Toxicology 171: 20–29.

    Article  PubMed  Google Scholar 

  • Sleator, R. D. & C. Hill, 2001. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews 26: 49–71.

    Article  Google Scholar 

  • Smith, R. A., R. B. Alexander & M. G. Wolman, 1987. Water-quality trends in the nation’s rivers. Science 235: 1607–1615.

    Article  CAS  PubMed  Google Scholar 

  • Strayer, D. L. & D. Dudgeon, 2010. Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29: 344–358.

    Article  Google Scholar 

  • Swan, C. M. & M. A. Palmer, 2006. Preferential feeding by an aquatic consumer mediates non-additive decomposition of speciose leaf litter. Oecologia 149: 107–114.

    Article  PubMed  Google Scholar 

  • Sweeney, B. W. & R. L. Vannote, 1978. Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200: 444–446.

    Article  CAS  PubMed  Google Scholar 

  • Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29: 118–146.

    Article  Google Scholar 

  • US EPA (Environmental Protection Agency), 2004. Evaluation of impacts to underground sources of drinking water by hydraulic fracturing of coalbed methane reservoirs study, Vol. 2010. United States Environmental Protection Agency, Office of Water, Washington, D.C.

    Google Scholar 

  • US EPA (Environmental Protection Agency), 2013. National Rivers and Streams Assessment 2008–2009 results.

  • Wallace, J. B., J. R. Webster & T. F. Cuffney, 1982. Stream detritus dynamics - regulation by invertebrate consumers. Oecologia 53: 197–200.

    Article  Google Scholar 

  • Wesner, J. S., J. M. Kraus, T. S. Schmidt, D. M. Walters & W. H. Clements, 2014. Metamorphosis enhances the effects of metal exposure on the mayfly, Centroptilum triangulifer. Environmental Science & Technology 48: 10415–10422.

    Article  CAS  Google Scholar 

  • Woodward, G. & P. Warren, 2007. Body Size and Predatory Interaction in Freshwaters: Scaling from Individuals to Communities. In Hildrew, A. G., D. G. Raffaelli & R. Edmonds-Brown (eds), Body size: The structure and function of aquatic ecosystems. Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Acknowledgments

Lucy Baker, David Costello, Chris Fuller, Brittany Furtado, Brent Johnson, Katherine Larson, Stephanie Stoughton, Manuel Graça, Raelyn Rowland, and two anonymous reviewers contributed valuable comments that improved the experimental design and the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Entrekin.

Additional information

Handling editor: Verónica Jacinta Lopes Ferreira

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyree, M., Clay, N., Polaskey, S. et al. Salt in our streams: even small sodium additions can have negative effects on detritivores. Hydrobiologia 775, 109–122 (2016). https://doi.org/10.1007/s10750-016-2718-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2718-6

Keywords

Navigation