Skip to main content

Advertisement

Log in

Propagule pressure, invasibility of freshwater ecosystems by macrophytes and their ecological impacts: a review of tropical freshwater ecosystems

  • INVASIVE SPECIES
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In this review, we aim to draw parallels between the principal concepts of invasion biology, developed mainly for terrestrial plants in temperate regions, with findings for macrophytes recorded in tropical inland waters. In these ecosystems, the most important abiotic and biotic filters influencing invasion success are related to water and sediment conditions, light, disturbance, hydrology and the diversity and density of native species. The main impacts are related to direct and indirect changes in the populations and communities of native macrophytes and other associated organisms. Non-native ecosystem engineer species of macrophytes can affect ecosystems directly, and after affecting ecosystems, their effects can extend to populations and communities. High plant growth rates in the tropics could lead to rapid invasion and larger impacts compared to temperate ecosystems. Although we found many parallels between ecosystems regarding the general concepts of invasion, areas that should receive further investigation in the tropics include (i) the synergistic interaction of multiple invasive species, (ii) the effects of regime shift on invasion success and vice versa and (iii) how climate change will affect the dynamics of macrophyte invasion in tropical ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams, C. S., R. R. Boar, D. S. Hubble, M. Gikungu, D. M. Harper, P. Hickley & N. Tarras-Wahlberg, 2002. The dynamics and ecology of exotic tropical species in floating plant mats: Lake Naivasha, Kenya. Hydrobiologia 488: 115–122.

    Google Scholar 

  • Adebayo, A. A., E. Briski, O. Kalaci, M. Hernandez, S. Ghabooli, B. Beric, F. T. Chan, A. Zhan, E. Fifield, T. Leadley & H. J. MacIsaac, 2011. Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes) in the Great Lakes: playing with fire? Aquatic Invasions 6: 91–96.

    Google Scholar 

  • Agostinho, A. A., F. M. Pelicice, A. C. Petry, L. C. Gomes & H. F. Júlio Jr, 2007. Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. Aquatic Ecosystem Health & Management 10: 174–186.

    Google Scholar 

  • Ali, M. M. & M. A. Soltan, 2006. Expansion of Myriophyllum spicatum (Eurasian water milfoil) into Lake Nasser, Egypt: invasive capacity and habitat stability. Aquatic Botany 84: 239–244.

    Google Scholar 

  • Ali, M. M., S. A. Hassan & A. S. M. Shaheen, 2011. Impact of riparian trees shade on aquatic plant abundance in conservation islands. Acta Botanica Croatica 70: 245–258.

    Google Scholar 

  • Anderson, L. W. J., 2011. Freshwater plants and seaweeds. In Simberloff, D. & M. Rejmánek (eds), Encyclopedia of Biological Invasions. University of California Press, Berkeley: 248–258.

    Google Scholar 

  • Balian, E. V., H. Segers, C. Lévèque & K. Martens, 2008. The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595: 627–637.

    Google Scholar 

  • Barko, J. W. & R. M. Smart, 2006. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwater Biology 10(3): 229–238.

    Google Scholar 

  • Barrientos, C. A. & M. S. Allen, 2008. Fish abundance and community composition in native and non-native plants following hydrilla colonisation at Lake Izabal, Guatemala. Fisheries Management and Ecology 15: 99–106.

    Google Scholar 

  • Batanouny, K. H. & A. M. El-Fiky, 1975. The water hyacinth (Eichhornia crassipes Solms) in the Nile system, Egypt. Aquatic Botany 1: 243–252.

    Google Scholar 

  • Bellard, C., W. Thuiller, B. Leroy, P. Genovesi, M. Bakkenes & F. Courchamp, 2013. Will climate change promote future invasions? Global Change Biology 19(12): 3740–3748.

    PubMed Central  PubMed  Google Scholar 

  • Bianchini Jr, I., M. B. Cunha-Santino, J. A. M. Milan, C. J. Rodrigues & J. H. P. Dias, 2010. Growth of Hydrilla verticillata (L.f.) Royle under controlled conditions. Hydrobiologia 644: 301–312.

    Google Scholar 

  • Blossey, B., 2011. Enemy release hypothesis. In Simberloff, D. & M. Rejmánek (eds), Encyclopedia of Biological Invasions. University of California Press, Berkeley: 193–196.

    Google Scholar 

  • Brendonck, L., J. Maes, W. Rommens, N. Dekeza, T. Nhiwatiwa, M. Barson, V. Callebaut, C. Phiri, K. Moreau, B. Gratwicke, M. Stevens, N. Alyn, E. Holsters, F. Ollevier & B. Marshall, 2003. The impact of water hyacinth (Eichhonria crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). II. Species diversity. Archiv für Hydrobiologie 158: 389–405.

    Google Scholar 

  • Brönmark, C. & L. A. Hansson, 2005. The Biology of Lakes and Ponds. Oxford University Press, Oxford.

    Google Scholar 

  • Brundu, G., M. M. Azzella, C. Blasi, I. Camarda, M. Iberite & L. Celesti-Grapow, 2013. The silent invasion of Eichhornia crassipes (Mart.) Solms. in Italy. Plant Biosystems 147(4): 1120–1127.

    Google Scholar 

  • Bunn, S. E., P. M. Davies, D. M. Kellaway & I. P. Prosser, 1998. Influence of invasive macrophytes on channel morphology and hydrology in an open tropical lowland stream, and potential control by riparian shading. Freshwater Biology 39: 171–178.

    Google Scholar 

  • Callaway, R. M. & W. M. Ridenour, 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment 2: 436–443.

    Google Scholar 

  • Capers, R. S., R. Selsky, G. J. Bugbee & J. C. White, 2007. Aquatic plant community invasibility and scale-dependent patterns in native and invasive species richness. Ecology 88: 3135–3143.

    PubMed  Google Scholar 

  • Carignan, R. & J. Kallf, 1980. Phosphorus sources for aquatic weeds – water or sediments? Science 207: 987–989.

    CAS  PubMed  Google Scholar 

  • Carniatto, N., S. M. Thomaz, E. R. Cunha, R. Fugi & R. Ota, 2013. Effects of an invasive alien Poaceae on aquatic macrophytes and fish communities in a Neotropical reservoir. Biotropica 45: 747–754.

    Google Scholar 

  • Catford, J. A., R. Jansson & C. Nilsson, 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions 15: 22–40.

    Google Scholar 

  • Catford, J. A., B. J. Downes, C. J. Gippel & P. A. Vesk, 2011. Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. Journal of Applied Ecology 48: 432–442.

    Google Scholar 

  • Chadwell, T. B. & K. A. M. Engelhardt, 2008. Effects of pre-existing submersed vegetation and propagule pressure on the invasion success of Hydrilla verticillata. Journal of Applied Ecology 45: 515–523.

    Google Scholar 

  • Chambers, P. A., 1987. Nearshore occurrence of submersed aquatic macrophytes in relation to wave action. Canadian Journal of Fisheries and Aquatic Sciences 44: 1666–1669.

    Google Scholar 

  • Chambers, P. A., J. W. Barko & C. S. Smith, 1993. Evaluation of invasions and declines of submersed aquatic macrophytes. Journal of Aquatic Plant Management 31: 218–220.

    Google Scholar 

  • Chamier, J., K. Schachtschneider, D. C. le Maitre, P. J. Ashton & B. W. van Wilgen, 2012. Impacts of invasive alien plants on water quality, with particular emphasis on South Africa. Water SA 38: 345–356.

    Google Scholar 

  • Chen, F., T. Shu, E. Jeppesen, Z. Liu & Y. Chen, 2013. Restoration of a subtropical eutrophic shallow lake in China: effects on nutrient concentrations and biological communities. Hydrobiologia 718: 59–71.

    CAS  Google Scholar 

  • Chesson, P. & J. J. Kuang, 2008. The interaction between predation and competition. Nature 456: 235–238.

    CAS  PubMed  Google Scholar 

  • Chiba, W. A. C., M. B. Cunha-Santino & I. Bianchini Junior, 2013a. Anaerobic decomposition of a native and an exotic submersed macrophyte in two tropical reservoirs. Brazilian Journal of Biology 73: 299–307.

    Google Scholar 

  • Chiba, W. A. C., M. L. Moitas, G. M. Lobato, M. B. Cunha-Santino & D. M. Silva-Matos, 2013b. First record of herbivory of the invasive macrophyte Hedychium coronarium J. König (Zingiberaceae). Biota. Neotropica 13(4): 368–370.

    Google Scholar 

  • Clarke, A., P. S. Lake & D. J. O’Dowd, 2004. Ecological impacts on aquatic macroinvertebrates following upland stream invasion by a ponded pasture grass (Glyceria maxima) in southern Australia. Marine and Freshwater Research 55: 709–713.

    Google Scholar 

  • Coetzee, J. A., 2006. The threat of hydrilla to South Africa. Plant Protection News 68: 15.

    Google Scholar 

  • Coetzee, J. A., P. H. Martin & D. Schlange, 2009. Potential spread of the invasive plant Hydrilla verticillata in South Africa based on anthropogenic spread and climate. Biological Invasions 11: 801–812.

    Google Scholar 

  • Coetzee, J. A., A. Bownes & G. D. Martin, 2011a. Prospects for the biological control of submerged macrophytes in South Africa. African Entomology 19: 469–487.

    Google Scholar 

  • Coetzee, J. A., M. P. Hill, M. J. Byrne & A. Bownes, 2011b. A review of the biological control programmes on Eichhornia crassipes (C. Mart.) Solms (Pontederiaceae), Salvinia molesta D. S. Mitch. (Salviniaceae), Pistia stratiotes L. (Araceae), Myriophyllum aquaticum (Vell.) Verdc. (Haloragaceae) and Azolla filiculoides Lam. (Azollaceae) in South Africa. African Entomology 19: 451–468.

    Google Scholar 

  • Coetzee, J. A. & M. P. Hill, 2012. The role of eutrophication in the biological control of water hyacinth, Eichhornia crassipes, in South Africa. BioControl 57: 247–261.

    Google Scholar 

  • Coetzee, J. A., R. W. Jones & M. P. Hill, 2014. Water hyacinth, Eichhornia crassipes (Pontederiaceae), reduces benthic macroinvertebrate diversity in a protected subtropical lake in South Africa. Biodiversity Conservation 23: 1319–1330.

    Google Scholar 

  • Colautti, R. I., I. A. Grigorovich & H. J. MacIsaac, 2006. Propagule pressure: a null model for biological invasions. Biological Invasions 8: 1023–1037.

    Google Scholar 

  • Copeland, R. S., E. Nkubaye, B. Nzigidahera, J. P. Cuda & W. A. Overholt, 2011. The African Burrowing Mayfly, Povilla adusta (Ephemeroptera:Polymitarcyidae), Damages Hydrilla verticillata (Alismatales:Hydrocharitaceae) in Lake Tanganyika. Florida Entomologist 94(3): 669–676.

    Google Scholar 

  • Crooks, J. A., 2005. Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12: 316–329.

    Google Scholar 

  • Cunha, E. R., S. M. Thomaz, H. B. A. Evangelista, J. Carniatto, C. F. Souza & R. Fugi, 2011. Small-sized fish assemblages do not differ between a native and a recently established non-indigenous macrophyte in a Neotropical ecosystem. Natureza & Conservação (Brazilian Journal of Nature and Conservation) 9: 61–66.

    Google Scholar 

  • Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528–534.

    Google Scholar 

  • Davis, M. A., 2003. Biotic globalization: does competition from introduced species threaten biodiversity? BioScience 53: 481–489.

    Google Scholar 

  • Davis, M. A., 2009. Invasion Biology. Oxford University Press, Oxford. 244p.

    Google Scholar 

  • De Winton, M. D. & J. S. Clayton, 1996. The impact of invasive submerged weed species on seed banks in lake sediments. Aquatic Botany 53: 31–45.

    Google Scholar 

  • Dibble, E. D. & K. Kovalenko, 2009. Ecological impact of grass carp: a review of the available data. Journal of Aquatic Plant Management 47: 1–15.

    Google Scholar 

  • Dibble, E. D., K. J. Killgore & S. L. Harrel, 1996. Assessment of fish–plant interaction. American Fisheries Society Simposium 16: 357–372.

    Google Scholar 

  • Douglas, M. M. & R. A. O’Connor, 2003. Effects of the exotic macrophyte, para grass (Urochloa mutica), on benthic and epiphytic macroinvertebrates of a tropical floodplain. Freshwater Biology 48: 962–971.

    Google Scholar 

  • Downing-Kunz, M. & M. Stacey, 2011. Flow-induced forces on free-floating macrophytes. Hydrobiologia 671: 121–135.

    Google Scholar 

  • Doyle, R. D., 2001. Effects of waves on the early growth of Vallisneria americana. Freshwater Biology 46: 389–397.

    Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Google Scholar 

  • Dugdale, T. M., D. Clements, T. D. Hunt & K. L. Butler, 2012. Survival of a submerged aquatic weed (Egeria densa) during lake drawdown within mounds of stranded vegetation. Lake and Reservoir Management 28: 153–157.

    CAS  Google Scholar 

  • Dukes, J. S. & H. A. Mooney, 1999. Does global change increase the success of biological invaders? Trends in Ecology & Evolution 14(4): 135–139.

    Google Scholar 

  • Duncan, R. P., 2011. Propagule pressure. In Simberloff, D. & M. Rejmánek (eds), Encyclopedia of Biological Invasions. University of California Press, Berkeley: 561–563.

    Google Scholar 

  • Engelhardt, K. A. M., 2011. Eutrophication, aquatic. In Simberloff, D. & M. Rejmánek (eds), Encyclopedia of Biological Invasions. University of California Press, Berkeley: 209–213.

    Google Scholar 

  • Erhard, D. & E. M. Gross, 2006. Allelopathic activity of Elodea Canadensis and E. nuttallii against epiphytes and phytoplankton. Aquatic Botany 85: 203–211.

    Google Scholar 

  • Fargione, J. E. & D. Tilman, 2005. Diversity decreases invasion via both sampling and complementarity effects. Ecology Letters 8: 604–611.

    Google Scholar 

  • Fernandes, I. M., F. A. Machado & J. Penha, 2010. Spatial pattern of a fish assemblage in a seasonal tropical wetland: effects of habitat, herbaceous plant biomass, water depth, and distance from species sources. Neotropical Ichthyology 8: 289–298.

    Google Scholar 

  • Forsberg, C., 1992. Will an increased greenhouse impact in Fennoscandia give rise to more humic and coloured lakes? Hydrobiologia 229: 51–58.

    CAS  Google Scholar 

  • Frazer, T. K., S. K. Notestein, C. A. Jacoby, C. J. Littlest, S. R. Keller & R. A. Swett, 2006. Effects of storm-induced salinity changes on submersed aquatic vegetation in Kings Bay, Florida. Estuaries and Coasts 29: 943–953.

    Google Scholar 

  • Fridley, J. D., 2011. Invasibility, of communities and ecosystems. In Simberloff, D. & M. Rejmánek (eds), Encyclopedia of Biological Invasions. University of California Press, Berkeley: 356–360.

    Google Scholar 

  • Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. Tilman & B. Von Holle, 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88: 3–17.

    CAS  PubMed  Google Scholar 

  • Garcia-Llorente, M., B. Martin-Lopez, S. Diaz & C. Montes, 2011. Can ecosystem properties be fully translated into service values? An economic valuation of aquatic plant. Ecological Applications 21(8): 3083–3103.

    Google Scholar 

  • Gaudet, J. J., 1979. Aquatic weeds in African man-made lakes. Pest Articles News Summaries 25: 279–286.

    Google Scholar 

  • Gopal, B. & U. Goel, 1993. Competition and allelopathy in aquatic plant communities. The Botanical Review 59: 155–210.

    Google Scholar 

  • Granéli, W., 2012. Brownification of lakes. In Bengtsson, L., R. W. Herschy & R. W. Fairbridge (eds), Encyclopedia of Lakes and Reservoirs. Springer Science and Business Media B.V, Dordrecht.

    Google Scholar 

  • Harrel, S. L. & E. D. Dibble, 2001. Foraging efficiency of juvenile blue-gill, Lepomis macrochirus, among different vegetated habitats. Environmental Biology of Fishes 62: 441–453.

    Google Scholar 

  • Havel, J. E., C. E. Lee & M. J. V. Zanden, 2005. Do reservoirs facilitate invasions into Landscapes? BioScience 55: 518–525.

    Google Scholar 

  • Henry-Silva, G. G., A. F. M. Amargo & M. M. Pezzato, 2008. Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia 610: 153–160.

    CAS  Google Scholar 

  • Hill, M. P. & T. Olckers, 2001. Biological control initiatives against water hyacinth in South Africa: constraining factors, success and new courses of action. In: Julien M., M.P. Hill, T. Center & J. Ding (eds), Proceedings of the Meeting of the Global Working Group for the Biological Control and Integrated Control of Water Hyacinth, Beijing, China, 9–12 October 2000. Australian Centre for International Agricultural Research, Canberra: 33–38.

  • Hill, M. P., 2003. The impact and control of alien aquatic vegetation in South African aquatic ecosystems. African Journal of Aquatic Science 28(1): 19–24.

    Google Scholar 

  • Hilt, S. & E. M. Gross, 2008. Can allelophatically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology 9: 422–432.

    Google Scholar 

  • Houston, W. A. & L. J. Duivenvoorden, 2002. Replacement of littoral native vegetation with the ponded pasture grass Hymenachne amplexicaulis: effects on plants, macroinvertebrates and fish biodiversity of backwaters in the Fitzroy River, Central Queensland, Australia. Marine and Freshwater Research 53: 1235–1244.

    Google Scholar 

  • Hulme, P. E., P. Pyšek & R. P. Duncan, 2011. Don’t be fooled by a name: a reply to Thompson and Davis. Trends in Ecology and Evolution 26: 318.

    PubMed  Google Scholar 

  • Hulme, P. E., P. Pyšek, V. Jarošík, J. Pergl, U. Schaffner & M. Vilà, 2013. Bias and error in understanding plant invasion impacts. Trends in Ecology and Evolution 28: 212–218.

    PubMed  Google Scholar 

  • James, C. S., J. W. Eaton & K. Hardwic, 1999. Competition between three submerged macrophytes, Elodea canadensis Michx, Elodea nuttallii (Planch.) St John and Lagarosiphon major (Ridl.) Moss. Hydrobiologia 415: 35–40.

    Google Scholar 

  • Jenkins, M., 2003. Prospects for biodiversity. Science 302: 1175–1177.

    CAS  PubMed  Google Scholar 

  • Jeschke, J. M., L. G. Aparicio, S. Haider, T. Heger, C. J. Lortie, P. Pyšek & D. L. Strayer, 2012. Support for major hypotheses in invasion biology is uneven and declining. Neobiota 14: 1–20.

    Google Scholar 

  • Johnson, P. T. J., J. D. Olden & M. J. V. Zanden, 2008. Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment 6: 359–365.

    Google Scholar 

  • Jones, C. G. & R. M. Callaway, 2007. The third party. Journal of Vegetation Science 18: 771–776.

    Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river–floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Keane, R. M. & M. J. Crawley, 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution 17: 164–170.

    Google Scholar 

  • Kennedy, T. A., S. Naeem, K. M. Howe, J. M. H. Knops, D. Tilman & P. Reich, 2002. Biodiversity as a barrier to ecological invasion. Nature 417: 636–638.

    CAS  PubMed  Google Scholar 

  • Klinger, R. C., 2011. Fire regime. In Simberloff, D. & M. Rejmánek (eds), Encyclopedia of Biological Invasions. University of California Press, Berkeley: 223–228.

    Google Scholar 

  • Kosten, S., G. Lacerot, E. Jeppesen, D. D. Marques, E. H. van Nes, N. Mazzeo & M. Scheffer, 2009. Effects of submerged vegetation on water clarity across climates. Ecosystems 12: 1117–1129.

    Google Scholar 

  • Kovalenko, K., E. D. Dibble & R. Fugi, 2009. Fish feeding in changing habitats: effects of invasive macrophyte control and habitat complexity. Ecology of Freshwater Fish 18: 305–313.

    Google Scholar 

  • Kovalenko, K. E., E. D. Dibble, A. A. Agostinho, G. Catanhêde & R. Fugi, 2010. Direct and indirect effects of an introduced piscivore, Cichla kelberi and their modification by aquatic plants. Hydrobiologia 638: 245–253.

    Google Scholar 

  • Kovalenko, K. E. & E. D. Dibble, 2014. Invasive macrophyte effects on littoral trophic structure and carbon sources. Hydrobiologia 721: 23–34.

    CAS  Google Scholar 

  • Langeland, K. A., 1996. Hydrilla verticillata (L.F.) Royle (Hydrocharitaceae), “The Perfect Aquatic Weed”. Castanea 61: 293–304.

    Google Scholar 

  • Lawton, J. H., 1999. Are there general laws in ecology? Oikos 84: 177–192.

    Google Scholar 

  • Leu, E., A. Krieger-Liszkay, C. Goussias & E. M. Gross, 2002. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiology 130: 2011–2018.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leung, B., J. M. Drake & D. M. Lodge, 2004. Predicting invasions: propagule pressure and the gravity of Allee effects. Ecology 85: 1651–1660.

    Google Scholar 

  • Levine, J. M., 2000. Species diversity and biological invasions relating local process to community pattern. Science 288: 852–854.

    CAS  PubMed  Google Scholar 

  • Levine, J. M., 2008. Biological invasions. Current Biology 18: 81–158.

    Google Scholar 

  • Levine, J. M., P. B. Adler & S. G. Yelenik, 2004. A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters 7: 975–989.

    Google Scholar 

  • Liao, C. Z., Y. Q. Luo, C. M. Fang, J. K. Chen & B. Li, 2008. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary. Oecologia 156(3): 589–600.

    PubMed  Google Scholar 

  • Lonsdale, W. M., 1999. Global patterns of plant invasions and the concept of invisibility. Ecology 80: 1522–1536.

    Google Scholar 

  • Loo, S. E., R. M. Rally, D. J. O´Dowd & P. S. Lake, 2009. Secondary invasions: implications of Riparian Restoration for in-stream invasion by an aquatic grass. Restoration Ecology 17: 378–385.

    Google Scholar 

  • Lu, J., Z. Wang, W. Xing & G. Liu, 2013. Effects of substrate and shading on the growth of two submerged macrophytes. Hydrobiologia 700: 157–167.

    Google Scholar 

  • Luz-Agostinho, K. D. G., A. A. Agostinho, L. C. Gomes, H. F. Júlio-Jr & R. Fugi, 2009. Effects of flooding regime on the feeding activity and body condition of piscivorous fish in the Upper Parana River floodplain. Brazilian Journal of Biology 69: 481–490.

    CAS  Google Scholar 

  • Madeira, P. T., J. A. Coetzee, T. D. Center, E. E. White & P. W. Tipping, 2007. The origin of Hydrilla verticillata recently discovered at a South African dam. Aquatic Botany 87: 176–180.

    Google Scholar 

  • Madsen, J. D., J. W. Sutherland, J. A. Bloomfield, L. W. Eichler & C. W. Boylen, 1991. The decline of native vegetation under dense Eurasian watermilfoil canopies. Journal of Aquatic Plant Management 29: 94–99.

    Google Scholar 

  • Marshall, B. E. & F. J. R. Junor, 1981. The decline of Salvinia molesta on Lake Kariba. Hydrobiologia 83: 477–484.

    Google Scholar 

  • Martin, G. D. & J. A. Coetzee, 2011. Pet stores, aquarists and the internet trade as modes of introduction and spread of invasive macrophytes in South Africa. Water SA 37: 371–380.

    Google Scholar 

  • Martin, C. W. & J. F. Valentine, 2014. Sexual and asexual reproductive strategies of invasive Eurasian milfoil (Myriophyllum spicatum) in estuarine environments. Hydrobiologia 727: 177–184.

    Google Scholar 

  • Michelan, T. S., S. M. Thomaz, R. P. Mormul & P. Carvalho, 2010a. Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshwater Biology 55: 1315–1326.

    Google Scholar 

  • Michelan, T. S., S. M. Thomaz, P. Carvalho, R. B. Rodrigues & M. J. Silveira, 2010b. Regeneration and colonization of an invasive macrophyte grass in response to desiccation. Natureza & Conservacao 20: 133–139.

    Google Scholar 

  • Michelan, T. S., S. M. Thomaz & L. M. Bini, 2013. Native macrophyte density and richness matter for invasiveness of a tropical Poaceae. PLoS One 8: e60004.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michelan, T. S., D. K. Petsch, G. D. Pinha, M. J. Silveira & S. M. Thomaz, 2015. The invasive aquatic macrophyte Hydrilla verticillata facilitates the establishment of the invasive mussel Limnoperna fortunei in Neotropical reservoirs. Journal of Limnology (in press).

  • Midgley, J. M., M. P. Hill & M. H. Villet, 2006. The effect of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae), on benthic biodiversity in impoundments on the New Year’s River, South Africa. African Journal of Aquatic Science 31: 25–30.

    Google Scholar 

  • Milly, P. C. D., K. A. Dunne & A. V. Vecchia, 2005. Global pattern of trends in stream flow and water availability in a changing climate. Nature 438: 347–350.

    CAS  PubMed  Google Scholar 

  • Mitchell, D. S., 1969. The ecology of vascular hydrophytes on Lake Kariba. Hydrobiologia 34: 448–464.

    Google Scholar 

  • Monterroso, I., R. Binimelis & B. Rodríguez-Labajos, 2011. New methods for the analysis of invasion processes: multi-criteria evaluation of the invasion of Hydrilla verticillata in Guatemala. Journal of Environmental Management 92: 494–507.

    CAS  PubMed  Google Scholar 

  • Mormul, R. P., S. M. Thomaz, J. Higuti & K. Martens, 2010. Ostracod (Crustacea) colonization of a native and a non-native macrophyte species of Hydrocharitaceae in the Upper Paraná floodplain (Brazil): an experimental evaluation. Hydrobiologia 644: 185–193.

    Google Scholar 

  • Mormul, R. P., J. Ahlgren, M. K. Ekvall, L. Hansson & C. Brönmark, 2012. Water brownification may increase the invasibility of a sub-merged non-native macrophyte. Biological Invasions 14: 2091–2099.

    Google Scholar 

  • Neto, C. R. B., C. Q. Gorgati & R. A. Pitelli, 2004. Influência da concentração de inóculo e da idade da planta na intensidade de doença causada por Fusarium graminearum em Egeria densa e E. najas. Fitopatologia Brasileira 29: 282–288.

    Google Scholar 

  • Njambuya, J. & L. Triest, 2010. Comparative performance of invasive alien Eichhornia crassipes and native Ludwigia stolonifera under non-limiting nutrient conditions in Lake Naiva Lake Naivasha, Kenya. Hydrobiologia 656: 221–231.

    Google Scholar 

  • Payne, A. I., 1986. The Ecology of Tropical Lakes and Rivers. Wiley, Chichester.

    Google Scholar 

  • Perna, C. & D. Burrows, 2005. Improved dissolved oxygen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin River floodplain, Australia. Marine Pollution Bulletin 51: 138–148.

    CAS  PubMed  Google Scholar 

  • Perna, C. N., M. Cappo, B. J. Pusey, D. W. Burrows & R. G. Pearson, 2012. Removal of aquatic weeds greatly enhances fish community richness and diversity: an example from the Burdekin River floodplain, tropical Australia. River Research and Applications 28: 1093–1104.

    Google Scholar 

  • Pyšek, P., D. M. Richardson, J. Pergl, V. Jarošík, Z. Sixtová & E. Weber, 2008. Geographical and taxonomic biases in invasion ecology. Trends in Ecology and Evolution 23: 237–244.

    PubMed  Google Scholar 

  • Pyšek, P., V. Jarošík, P. E. Hulme, J. Pergl, M. Hejda, U. Schaffner & M. Vilà, 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Global Change Biology 18: 1725–1737.

    PubMed Central  Google Scholar 

  • Quinn, L. D., C. Jarnevich, G. W. Chong & P. H. Evangelista, 2011. Effects of land use and environment on alien and native macrophytes: lessons from a large-scale survey of Australian rivers. Diversity and Distribution 17: 132–143.

    Google Scholar 

  • Rai, D. N. & J. D. Munshi, 1979. The influence of thick floating vegetation (water hyacinth: Eichhornia crassipes) on the physic-chemical environment of a fresh water wetland. Hydrobiologia 62: 65–69.

    CAS  Google Scholar 

  • Rejmánek, M., 2011. Invasiveness. In Simberloff, D. & M. Rejmánek (eds), Encyclopedia of Biological Invasions. University of California Press, Berkeley: 379–385.

    Google Scholar 

  • Roberts, D. E., A. G. Church & S. P. Cummins, 1999. Invasion of Egeria into the Hawkesbury-Nepean River, Australia. Journal of Aquatic Plant Management 37: 31–34.

    Google Scholar 

  • Rodriguez, M., J. Brisson, G. Rueda & M. S. Rodríguez, 2012. Water quality improvement of a reservoir invaded by an exotic macrophyte. Invasive Plant Science and Management 5(2): 290–299.

    CAS  Google Scholar 

  • Roland, F., V. L. M. Huszar, V. F. Farjalla, A. Enrich-Prast, A. M. Amado & J. P. H. B. Ometto, 2012. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology 72: 709–722.

    CAS  Google Scholar 

  • Sala, O. E., F. S. Chapin III, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.

    CAS  PubMed  Google Scholar 

  • Santamaría, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23: 137–154.

    Google Scholar 

  • Saunkaew, P., P. Wangpakapattanawong & A. Jampeetong, 2011. Growth, morphology, ammonium uptake and nutrient allocation of Myriophyllum brasiliense Cambess. under high NH4 + concentrations. Ecotoxicology 20: 2011–2018.

    CAS  PubMed  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    CAS  Google Scholar 

  • Scheffer, M., S. Szabó, A. Gragnani, E. H. van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers & R. J. M. Franken, 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences of the United States of America 100(7): 4040–4045.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schooler, S. S., B. Salau, M. H. Julien & A. R. Ives, 2011. Alternative stable states explain unpredictable biological control of Salvinia molesta in Kakadu. Nature 470: 86–89.

    CAS  PubMed  Google Scholar 

  • Schultz, R. & E. Dibble, 2012. Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits. Hydrobiologia 684: 1–14.

    Google Scholar 

  • Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Edward Arnold Publishers, London.

    Google Scholar 

  • Sharip, Z., S. S. Schooler, M. R. Hipsey & R. J. Hobbs, 2012. Eutrophication, agriculture and water level control shift aquatic plant communities from floating-leaved to submerged macrophytes in Lake Chini, Malaysia. Biological Invasions 14: 1029–1044.

    Google Scholar 

  • Shanab, S. M. M., E. A. Shalaby, D. A. Lightfoot & H. A. El-Shemy, 2010. Allelopathic effects of water hyacinth [Eichhornia crassipes]. PLoS One 5(10): e13200.

    PubMed Central  PubMed  Google Scholar 

  • Shuhaimi-Othman, M., E. C. Lim & I. Mushrifah, 2007. Water quality changes in Chini Lake, Pahang, West Malaysia. Environmental Monitoring Assessment 31: 279–292.

    Google Scholar 

  • Silveira, M. J., S. M. Thomaz, R. P. Mormul & F. P. Camacho, 2009. Effects of desiccation and sediment type on early regeneration of plant fragments of three species of aquatic macrophytes. International Review of Hydrobiology 94: 169–178.

    CAS  Google Scholar 

  • Simberloff, D., 2004. Community ecology: is it time to move on? The American Naturalist 163: 787–799.

    PubMed  Google Scholar 

  • Simberloff, D., 2006. Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecology Letters 9: 912–919.

    PubMed  Google Scholar 

  • Simberloff, D., 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution and Systematics 40: 81–102.

    Google Scholar 

  • Simberloff, D., 2010. Invasions of plant communities – more of the same, something very different, or both? The American Midland Naturalist 163: 220–233.

    Google Scholar 

  • Simberloff, D. & J. R. S. Vitule, 2014. A call for an end to calls for the end of invasion biology. Oikos 123(4): 408–413.

    Google Scholar 

  • Simberloff, D. & B. Von Holle, 1999. Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions 1: 21–32.

    Google Scholar 

  • Simberloff, D., J. L. Martin, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F. Courchamp, B. Galil, E. García-Berthou, M. Pascal, P. Pyšek, R. Sousa, E. Tabacchi & M. Vilá, 2013. Impacts of biological invasions: what’s what and the way forward. Trends in Ecology and Evolution 28: 58–66.

    PubMed  Google Scholar 

  • Sousa, W. T. Z., 2011. Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: a review of the extent of the problem. Hydrobiologia 669: 1–20.

    Google Scholar 

  • Sousa, W. T. Z., S. M. Thomaz, K. J. Murphy, M. J. Silveira & R. P. Mormul, 2009. Environmental predictors of the occurrence of exotic Hydrilla verticillata (L.f.) Royle and native Egeria najas Planch. in a sub-tropical river floodplain: the Upper River Paraná, Brazil. Hydrobiologia 632: 65–78.

    Google Scholar 

  • Sousa, W. T. Z., S. M. Thomaz & K. J. Murphy, 2010. Response of native Egeria najas Planch. and invasive Hydrilla verticillata (L.f.) Royle to altered hydroecological regime in a subtropical river. Aquatic Botany 92: 40–48.

    Google Scholar 

  • Stohlgren, T. J., C. Jarnevich, G. W. Chong & P. H. Evangelista, 2006. Scale and plant invasions: a theory of biotic acceptance. Preslia 78(4): 05–426.

    Google Scholar 

  • Strayer, D. L., 2012. Eight questions about invasions and ecosystem functioning. Ecology Letters 15: 1199–1210.

    PubMed  Google Scholar 

  • Tang, L., Y. Gao, C. H. Wang, B. Zhao & B. Li, 2012. A plant invader declines through its modification to habitats: a case study of a 16-year chronosequence of Spartina alterniflora invasion in a salt marsh. Ecological Engineering 49: 181–185.

    Google Scholar 

  • Theel, H. J., E. D. Dibble & J. D. Madsen, 2008. Differential influence of a monotypic and diverse native aquatic plant bed on a macroinvertebrate assemblage; an experimental implication of exotic plant induced habitat. Hydrobiologia 600: 77–87.

    Google Scholar 

  • Thiébaut, G., 2011. Invasion success of non-indigenous aquatic and semi-aquatic plants in their native and introduced ranges. A comparison between their invasiveness in North America and in France. Biological Invasions 9: 1–12.

    Google Scholar 

  • Thomaz, S. M. & T. S. Michelan, 2011. Associations between a highly invasive species and native macrophytes differ across spatial scales. Biological Invasions 13: 1881–1891.

    Google Scholar 

  • Thomaz, S. M., P. Carvalho, R. P. Mormul, F. A. Ferreira, M. J. Silveira & T. S. Michelan, 2009. Temporal trends and effects of diversity on occurrence of exotic macrophytes in a large reservoir. Acta Oecologica 35: 614–620.

    Google Scholar 

  • Thomaz, S. M., A. A. Agostinho, L. C. Gomes, M. J. Silveira, M. Rejmanek, C. E. Aslan & E. Chow, 2012a. Using space-for-time substitution and time sequence approaches in invasion ecology. Freshwater Biology 57: 2401–2410.

    Google Scholar 

  • Thomaz, S. M., M. J. Silveira & T. S. Michelan, 2012b. The colonization success of an exotic Poaceae is related to native macrophyte richness, wind disturbance and riparian vegetation. Aquatic Sciences 74: 809–815.

    CAS  Google Scholar 

  • Thornton, K. W., 1990. Sedimentary processes. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. Wiley, New York: 43–69.

    Google Scholar 

  • Thouvenot, L., J. Haury & G. Thiébaut, 2012. Responses of two invasive macrophyte species to salt. Hydrobiologia 686: 213–223.

    CAS  Google Scholar 

  • Trenberth, K. E., P. D. Jones, P. Ambenje, R. Bojariu, D. Easterling, T. A. Klein, D. Parker, F. Rahimzadeh, J. A. Renwick, M. Rusticucci, B. Soden & P. Zhai, 2007. Observations: surface and atmospheric climate change. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Climate Change 2007: The Physical Science Basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge.

  • Umetsu, C. A., H. B. A. Evangelista & S. M. Thomaz, 2012a. The colonization, regeneration, and growth rates of macrophytes from fragments: a comparison between exotic and native submerged aquatic species. Aquatic Ecology 46: 443–449.

    Google Scholar 

  • Umetsu, C. A., H. B. A. Evangelista & S. M. Thomaz, 2012b. Colonization, regeneration potential and growth rates of fragments of the exotic aquatic macrophyte Hydrilla verticillata. Aquatic Biology 16: 197–202.

    Google Scholar 

  • Veltman, C. J., S. Nee & M. J. Crawley, 1996. Correlates of introduction success in exotic New Zealand birds. American Naturalist 147: 542–557.

    Google Scholar 

  • Vestergaard, O. & K. Sand-Jensen, 2000. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area. Canadian Journal of Fisheries and Aquatic Sciences 57: 2022–2031.

    Google Scholar 

  • Villamagna, A. M. & B. R. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55: 282–298.

    Google Scholar 

  • Villamagna, A. M., B. R. Murphy & D. L. Trauger, 2010. Behavioral response of American coots (Fulica americana) to water hyacinth (Eichhornia crassipes) in Lake Chapala, Mexico. Waterbirds 33: 550–555.

    Google Scholar 

  • Von Holle, B. & D. Simberloff, 2005. Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86: 3212–3218.

    Google Scholar 

  • White, E. M., J. C. Wilson & A. R. Clarke, 2006. Biotic indirect effects: a neglected concept in invasion biology. Diversity and Distributions 12: 443–455.

    Google Scholar 

  • Williams, A. E., R. E. Hecky & H. C. Duthie, 2007. Water hyacinth decline across Lake Victoria – Was it caused by climatic perturbation or biological control? A reply. Aquatic Botany 87: 94–96.

    Google Scholar 

  • Wilson, J. R. U., O. Ajuonu, T. D. Center, M. P. Hill, M. H. Julien, F. F. Katagira, P. Neuenschwander, S. W. Njoka, J. Ogwang, R. H. Reeder & T. Van, 2007. The decline of water hyacinth on Lake Victoria was due to biological control by Neochetina spp. Aquatic Botany 87: 90–93.

    Google Scholar 

  • Wu, J., S. Cheng, W. Liang, F. He & Z. Wu, 2009a. Effects of sediment anoxia and light on turion germination and early growth of Potamogeton crispus. Hydrobiologia 628: 111–119.

    Google Scholar 

  • Wu, J., S. Cheng, W. Liang & Z. Wu, 2009b. Effects of organic-rich sediment and below-ground sulfide exposure on submerged macrophyte, Hydrilla verticillata. Bulletin of Environmental Contamination and Toxicology 83: 497–501.

    CAS  PubMed  Google Scholar 

  • Xiao, C., X. Wang, J. Xia & G. Liu, 2010. The effect of temperature, water level and burial depth on seed germination of Myriophyllum spicatum and Potamogeton malaianus. Aquatic Botany 92(1): 28–32.

    Google Scholar 

  • Xie, D., D. Yu, W. H. You & C. X. Xia, 2013. The propagule supply, litter layers and canopy shade in the littoral community influence the establishment and growth of Myriophyllum aquaticum. Biological Invasions 15: 113–123.

    Google Scholar 

  • Xiong, W., D. Yu, Q. Wang, C. Liu & L. Wang, 2008. A snail prefers native over exotic freshwater plants: implications for the enemy release hypotheses. Freshwater Biology 53: 2256–2263.

    Google Scholar 

  • Xu, K. Y., W. H. Ye, H. L. Cao, X. Deng, Q. H. Yang & Y. Zhang, 2004. The role of diversity and functional traits of species in community invasibility. Botanical Bulletin of Academia Sinica 45: 149–157.

    Google Scholar 

  • Yarrow, M., V. H. Marín, M. Finlayson, A. Tironi, L. E. Delgado & F. Fischer, 2009. The ecology of Egeria densa Planchon (Liliopsida: Alismatales): A wetland ecosystem engineer? Revista Chilena de Historia Natural 82: 299–313.

    Google Scholar 

  • Zhang, L., S. Wang, L. Jiao, H. Zhao, Y. Zhang & Y. Li, 2013. Physiological response of a submerged plant (Myriophyllum spicatum) to different NH4Cl concentrations in sediments. Ecological Engineering 58: 91–98.

    Google Scholar 

  • Zhu, G., T. Cao, M. Zhang, L. Ni & X. Zhang, 2014. Fertile sediment and ammonium enrichment decrease the growth and biomechanical strength of submersed macrophyte Myriophyllum spicatum in an experiment. Hydrobiologia 727: 109–120.

    Google Scholar 

Download references

Acknowledgments

We are thankful to two anonymous reviewers and Katya Kovalenko for constructive comments on the early draft of this work. S. M. Thomaz acknowledges with appreciation the National Council for Scientific and Technological Development (CNPq) for continuous funding through a Productivity Grant. R. P. Mormul and T. S. Michelan also acknowledge the CNPq for providing scholarships. This study was supported by CAPES, a Brazilian organization focused on the formation of human resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidinei M. Thomaz.

Additional information

Guest editors: Sidinei M. Thomaz, Katya E. Kovalenko, John E. Havel & Lee B. Kats / Aquatic Invasive Species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomaz, S.M., Mormul, R.P. & Michelan, T.S. Propagule pressure, invasibility of freshwater ecosystems by macrophytes and their ecological impacts: a review of tropical freshwater ecosystems. Hydrobiologia 746, 39–59 (2015). https://doi.org/10.1007/s10750-014-2044-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2044-9

Keywords

Navigation