Skip to main content
Log in

Changes in the phytoplankton structure in a Pampean shallow lake in the transition from a clear to a turbid regime

  • ARGENTINE PAMPEAN SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We analysed the changes in phytoplankton and in the main limnological features in a shallow lake during its transition from a clear-vegetated regime to a turbid one from 2005 to 2013. As samplings were discontinuous, data were analysed considering three different sampling periods. At the beginning of the first period, the lake was in a clear-vegetated regime, showing low values of chlorophyll a, KdPAR, total suspended solids and nutrients, and high Secchi depth. Phytoplankton was dominated by nano-phytoplanktonic species. During the second period, some evidences of the shift to a turbid regime were observed (mainly in KdPAR and total suspended solids). Towards the end of our study, submerged macrophytes sharply declined; in this period KdPAR and total suspended solids noticeably increased, whereas a significant reduction in Secchi depth occurred. Concomitantly, phytoplankton abundance augmented in two orders of magnitude, changing to a community with a higher proportion of micro-phytoplankton. Although the causes of the regimen shift could not be unequivocally assessed, the drastic reduction in the hydrometric level of the lake probably provoked a declination in macrophytes, with the consequent increase of nutrients in the water column and the increment in phytoplankton densities, carrying the system towards a turbid regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA, American Public Health Association, 2005. Standard Methods for the Examination of Water and Wastewaters. APHA, Washington DC.

    Google Scholar 

  • Allende, L., G. Tell, H. Zagarese, A. Torremorell, G. Pérez, J. Bustingorry, R. Escaray & I. Izaguirre, 2009. Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624: 45–60.

    Article  CAS  Google Scholar 

  • Bachmann, R. W., M. V. Hoyer & D. E. Canfield Jr., 1999. The restoration of Lake Apopka in relation to alternative stable states. Hydrobiologia 394: 219–232.

    Article  CAS  Google Scholar 

  • Bakker, E. S., J. M. Sarneel, R. D. Gulati, Z. Liu & E. Van Donk, 2013. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710: 23–37.

    Article  Google Scholar 

  • Bayley, S. E., I. F. Creed, G. Z. Sass & A. S. Wong, 2007. Frequent regime shifts in trophic states in shallow lakes on the Boreal Plain: alternative “unstable” states? Limnology & Oceanography 52: 2002–2012.

    Article  Google Scholar 

  • Blindow, I., 1992. Long-and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biology 28: 15–27.

    Article  Google Scholar 

  • Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30: 159–167.

    Article  Google Scholar 

  • Burks, R. L., G. Mulderij, E. Gross, I. Jones, L. Jacobsen, E. Jeppesen & E. Van Donk, 2006. Center stage: the crucial role of macrophytes in regulating trophic interactions in shallow lake wetlands. In Bobbink, R., B. Beltman, J. T. Verhoeven & D. F. Whigham (eds), Wetlands: Functioning, Biodiversity Conservation, and Restoration, Vol. 191. Springer, Berlin Heidelberg: 37–59.

    Chapter  Google Scholar 

  • Cano, M. G., M. A. Casco, L. C. Solari, M. E. Mac Donagh, N. A. Gabellone & M. C. Claps, 2008. Implications of rapid changes in Chlorophyll a of plankton, epipelon, and epiphyton in a Pampean shallow lake: an interpretation in terms of a conceptual model. Hydrobiologia 614: 33–45.

    Article  CAS  Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.

    Article  Google Scholar 

  • Casco, M. A., M. E. Mac Donagh, M. G. Cano, L. C. Solari, M. C. Claps & N. A. Gabellone, 2009. Phytoplankton and epipelon responses to clear and turbid phases in a Seepage Lake (Buenos Aires, Argentina). International Review of Hydrobiology 94: 153–168.

    Article  CAS  Google Scholar 

  • Chen, F., T. Shu, E. Jeppesen, Z. Liu & Y. Chen, 2013. Restoration of a subtropical eutrophic shallow lake in China: effects on nutrient concentrations and biological communities. Hydrobiologia 718: 59–71.

    Article  CAS  Google Scholar 

  • Cristofor, S., A. Vadineanu, A. Sarbu, C. Postolache, R. Dobre & M. Adamescu, 2003. Long-term changes of submerged macrophytes in the Lower Danube Wetland System. Hydrobiologia 506: 625–634.

    Article  Google Scholar 

  • Cymbola, J., M. Ogdahl & A. D. Steinman, 2008. Phytoplankton response to light and internal phosphorus loading from sediment release. Freshwater Biology 53: 2530–2542.

    Article  Google Scholar 

  • Hansel-Welch, N., M. G. Butler, T. J. Carlson & M. A. Hanson, 2003. Changes in macrophyte community structure in Lake Christina (Minnesota), a large shallow lake, following biomanipulation. Aquatic Botany 75: 323–337.

    Article  Google Scholar 

  • Hargeby, A., I. Blindow & G. Andersson, 2007. Long-term patterns of shifts between clear and turbid states in Lake Krankesjön and Lake Tåkern. Ecosystems 10: 28–35.

    Article  CAS  Google Scholar 

  • Holling, C. S., 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1–23.

    Article  Google Scholar 

  • Huisman, J., R. R. Jonker, C. Zonneveld & F. J. Weissing, 1999. Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80: 211–222.

    Article  Google Scholar 

  • Ibelings, B. W., R. Portielje, E. H. Lammens, R. Noordhuis, M. S. van den Berg, W. Joosse & M. L. Meijer, 2007. Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems 10: 4–16.

    Article  CAS  Google Scholar 

  • Immers, A. K., M. T. Van der Sande, R. M. Van der Zande, J. J. Geurts, E. Van Donk & E. S. Bakker, 2013. Iron addition as a shallow lake restoration measure: impacts on charophyte growth. Hydrobiologia 710: 241–251.

    Article  CAS  Google Scholar 

  • Izaguirre, I. & A. Vinocur, 1994. Algal assemblages from shallow lakes of the Salado River Basin (Argentina). Hydrobiologia 289: 57–64.

    Article  Google Scholar 

  • Izaguirre, I., L. Allende, R. Escaray, J. Bustingorry, G. Pérez & G. Tell, 2012. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia 698: 203–216.

    Article  CAS  Google Scholar 

  • Jones, R. I., 2000. Mixotrophy in planktonic protists: an overview. Freshwater Biology 45: 219–226.

    Article  Google Scholar 

  • Katsiapi, M., A. D. Mazaris, E. Charalampous & M. Moustaka-Gouni, 2012. Watershed land use types as drivers of freshwater phytoplankton structure. Hydrobiologia 698: 121–131.

    Article  CAS  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnology & Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • May, R. M., 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269: 471–477.

    Article  Google Scholar 

  • Mjelde, M. & B. A. Faafeng, 1997. Ceratophyllum demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus concentrations and geographical latitude. Freshwater Biology 37: 355–365.

    Article  Google Scholar 

  • Moss, B., 2010. Ecology of freshwaters. Oxford.

  • Nusch, E. A., 1980. Comparison of methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie 14: 14–36.

    CAS  Google Scholar 

  • Quirós, R., M. B. Boveri, A. M. Renella, J. Rosso, A. Sosnovsky & H. T. von Bernard, 2006. Los efectos de la agriculturización del humedal pampeano sobre la eutrofización de sus lagunas. Causas, conseqüências e tecnologias de gerenciamento e controle, Eutrofização na América do Sul: 1–16.

    Google Scholar 

  • Quirós, R., A. M. Renella, M. B. Boveri, J. Rosso & A. Sosnovsky, 2002. Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. Ecología Austral 12: 175–185.

    Google Scholar 

  • Quirós, R. & E. Drago, 1999. The environmental state of Argentinean lakes: an overview. Lakes & Reservoirs: Research and Management 4: 55–64.

    Article  Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rodríguez, C. F., E. Bécares & M. Fernández-Aláes, 2003. Shift from clear to turbid phase in Lake Chozas (NW Spain) due to the introduction of American red swamp crayfish (Procambarus clarkii). Hydrobiologia 506: 421–426.

    Article  Google Scholar 

  • Sánchez, M. L.,  H. Pizarro, G. Tell & I. Izaguirre, 2010. Relative importance of periphyton and phytoplankton in turbid and clear vegetated shallow lakes from the Pampa Plain (Argentina): a comparative experimental study. Hydrobiologia 646: 271-280.

  • Sánchez, M. L., G. L. Pérez, I. Izaguirre & H. Pizarro, 2013. Influence of underwater light climate on periphyton and phytoplankton communities in shallow lakes from the Pampa plain (Argentina) with contrasting steady states. Journal of Limnology 72: 62–78.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of shallow lakes. Chapman & Hall, London.

    Google Scholar 

  • Scheffer, M., 2001. Alternative attractors of shallow lakes. The Scientific World Journal 1: 254–263.

    Article  CAS  Google Scholar 

  • Scheffer, M., 2009. Critical Transitions in Nature and Society. Princeton University, Oxford.

    Google Scholar 

  • Scheffer, M. & S. R. Carpenter, 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. TRENDS in Ecology and Evolution 18: 648–656.

    Article  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer, M., S. Rinaldi, A. Gragnani, L. Mur & E. van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282.

    Article  Google Scholar 

  • Schröder, A., L. Persson & A. M. De Roos, 2005. Direct experimental evidence for alternative stable states: a review. Oikos 110: 3–19.

    Article  Google Scholar 

  • Silvoso, J., I. Izaguirre & L. Allende, 2010. Picoplankton structure in clear and turbid eutrophic shallow lakes: a seasonal study. Limnologica 41: 181–190.

    Article  Google Scholar 

  • Søndergaard, M., L. S. Johansson, T. L. Lauridsen, T. B. Jørgensen, L. Liboriussen & E. Jeppesen, 2010. Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology 55: 893–908.

    Article  Google Scholar 

  • Søndergaard, M. & B. Moss, 1997. Impact of submerged macrophytes on phytoplankton in shallow freshwaters lakes. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 115–132.

    Google Scholar 

  • Stomp, M., J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. A. Wollenzienand & L. J. Stal, 2004. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432: 104–107.

    Article  CAS  PubMed  Google Scholar 

  • Tátrai, I., G. Boros, Á. I. György, K. Mátyás, J. Korponai, P. Pomogyi, M. Havasi & T. Kucserka, 2009. Abrupt shift from clear to turbid state in a shallow eutrophic, biomanipulated lake. Hydrobiologia 620: 149–161.

    Article  Google Scholar 

  • Ter Braak, C. J. F., 1986. Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecology 67: 1167–1179.

  • Utermohl, M., 1958. Zur Vervollkommung der quantitativen Phytoplankton Methodik. Mitteilungen Internationale Vereinigung Limnologie 9: 1–38.

    Google Scholar 

  • Van Geest, G. J., H. Coops, M. Scheffer & E. H. Van Nes, 2007. Long transients near the ghost of a stable state in eutrophic shallow lakes with fluctuating water levels. Ecosystems 10: 37–47.

    Article  Google Scholar 

  • Venrick, E. L., 1978. How many cells to count? In Sournia, A. (ed.), Phytoplankton Manual. UNESCO, Paris: 167–180.

    Google Scholar 

  • Villar, C., L. de Cabo, P. Vaithiyanathan & C. Bonetto, 1998. River-floodplain interactions: nutrient concentrations in the Lower Paraná River. Archiv für Hydrobiologie 142: 433–450.

    CAS  Google Scholar 

  • Zimmer, K. D., M. A. Hanson & M. G. Butler, 2003. Relationships among nutrients, phytoplankton, macrophytes, and fish in prairie wetlands. Canadian Journal of Fisheries and Aquatic Sciences 60: 721–730.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank to Roberto Escaray, José Bustingorry and to the other members of Laboratorio de Ecología y Fotobiología Acuática (IIB-INTECH) and Laboratorio de Limnología (FCEyN-UBA) for their field and laboratory assistance. This study was supported by a grant from the University of Buenos Aires (UBACyT X838) and for the PAMPA2 project (Redes- CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Laura Sánchez.

Additional information

Guest editors: I. Izaguirre, L. A. Miranda, G. M. E. Perillo, M. C. Piccolo & H. E. Zagarese / Shallow Lakes from the Central Plains of Argentina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, M.L., Lagomarsino, L., Allende, L. et al. Changes in the phytoplankton structure in a Pampean shallow lake in the transition from a clear to a turbid regime. Hydrobiologia 752, 65–76 (2015). https://doi.org/10.1007/s10750-014-2010-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2010-6

Keywords

Navigation