Skip to main content
Log in

A boat hitchhiker’s guide to survival: Cabomba caroliniana desiccation resistance and survival ability

  • INVASIVE SPECIES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Cabomba caroliniana is a submersed macrophyte that has become a serious invader. Cabomba predominantly spreads by stem fragments, in particular through unintentional transport on boat trailers (‘hitch hiking’). Desiccation resistance affects the potential dispersal radius. Therefore, knowledge of maximum survival times allows predicting future dispersal. Experiments were conducted to assess desiccation resistance and survival ability of cabomba fragments under various environmental scenarios. Cabomba fragments were highly tolerant of desiccation. However, even relatively low wind speeds resulted in rapid mass loss, indicating a low survival rate of fragments exposed to air currents, such as fragments transported on a boat trailer. The experiments indicated that cabomba could survive at least 3 h of overland transport if exposed to wind. However, even small clumps of cabomba could potentially survive up to 42 h. Thus, targeting the transport of clumps of macrophytes should receive high priority in management. The high resilience of cabomba to desiccation demonstrates the risk of continuing spread. Because of the high probability of fragment viability on arrival, preventing fragment uptake on boat trailers is paramount to reduce the risk of further spread. These findings will assist improving models that predict the spread of aquatic invasive macrophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnes, M. A., C. L. Jerde, D. Keller, W. L. Chadderton, J. G. Howeth & D. M. Lodge, 2013. Viability of aquatic plant fragments following desiccation. Invasive Plant Science and Management 6: 320–325.

    Article  Google Scholar 

  • Barrat-Segretain, M.-H. & B. Cellot, 2007. Response of invasive macrophyte species to drawdown: the case of Elodea sp. Aquatic Botany 87: 255–261.

    Article  Google Scholar 

  • Bickel, T. O., 2012. Ecology of the submersed aquatic weed Cabomba caroliniana in Australia. In Eldershaw, V. (ed.), Eighteenth Australasian Weeds Conference, Melbourne, 8–11 October 2012. Weed Society of Victoria: 21–24.

  • Dugdale, T. M., K. L. Butler, D. Clements & T. D. Hunt, 2013. Survival of cabomba (Cabomba caroliniana) during lake drawdown within mounds of stranded vegetation. Lake and Reservoir Management 29: 1–7.

    Article  Google Scholar 

  • Evans, C. A., D. L. Keltin, K. M. Forrest & L. E. Steblen, 2011. Fragment viability and rootlet formation in Eurasian watermilfoil after desiccation. Journal of Aquatic Plant Management 49: 57–62.

    Google Scholar 

  • Hogsden, K. L., E. P. S. Sager & T. C. Hutchinson, 2007. The impacts of the non-native macrophyte Cabomba caroliniana on littoral biota of Kasshabog Lake, Ontario. Journal of Great Lakes Research 33: 497–504.

    Article  Google Scholar 

  • Jacobs, M. J. & H. J. Macisaac, 2009. Modelling spread of the invasive macrophyte Cabomba caroliniana. Freshwater Biology 54: 296–305.

    Article  Google Scholar 

  • Jerde, C. L., M. A. Barnes, E. K. DeBuysser, A. Noveroske, W. L. Chadderton & D. M. Lodge, 2012. Eurasian watermilfoil fitness loss and invasion potential following desiccation during simulated overland transport. Aquatic Invasions 7: 135–142.

    Article  Google Scholar 

  • Johnson, L. E., A. Ricciardi & J. T. Carlton, 2001. Overland dispersal of aquatic invasive species: a risk assessment of transient recreational boating. Ecological Applications 11: 1789–1799.

    Article  Google Scholar 

  • Johnstone, I. M., B. T. Coffey & C. Howard-Williams, 1985. The role of recreational boat traffic in interlake dispersal of macrophytes: a New Zealand case study. Journal of Environmental Management 20: 263–279.

    Google Scholar 

  • Les, D. & L. Mehrhoff, 1999. Introduction of nonindigenous aquatic vascular plants in southern New England: a historical perspective. Biological Invasions 1: 281–300.

    Article  Google Scholar 

  • Lockwood, J. L., P. Cassey & T. Blackburn, 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology & Evolution 20: 223–228.

    Article  Google Scholar 

  • Lockwood, J. L., P. Cassey & T. M. Blackburn, 2009. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions 15: 904–910.

    Article  Google Scholar 

  • Lodge, D. M., S. Williams, H. J. MacIsaac, K. R. Hayes, B. Leung, S. Reichard, R. N. Mack, P. B. Moyle, M. Smith, D. A. Andow, J. T. Carlton & A. McMichael, 2006. Biological invasions: recommendations for U.S. policy and management. Ecological Applications 16: 2035–2054.

    Article  PubMed  Google Scholar 

  • Lowe, S., M. Browne, S. Boudjelas & D. P. M., 2000. 100 of the worlds worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group, Auckland.

  • Mack, R. N., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout & F. A. Bazzaz, 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710.

    Article  Google Scholar 

  • Mackey, A. P. & J. T. Swarbrick, 1997. The biology of Australian weeds 32. Cabomba caroliniana Gray. Plant Protection Quarterly 12: 154–165.

    Google Scholar 

  • McAlarnen, L. A., M. A. Barnes, C. L. Jerde & D. M. Lodge, 2012. Simulated overland transport of Eurasian watermilfoil: survival of desiccated plant fragments. Journal of Aquatic Plant Management 50: 147–149.

    Google Scholar 

  • McCracken, A., J. D. Bainard, M. C. Miller & B. C. Husband, 2013. Pathways of introduction of the invasive aquatic plant Cabomba caroliniana. Ecology and Evolution 3: 1427–1439.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ørgaard, M., 1991. The genus Cabomba (Cabombaceae) – a taxonomic study. Nordic Journal of Botany 11: 179–203.

    Article  Google Scholar 

  • Puth, L. M. & D. M. Post, 2005. Studying invasion: have we missed the boat? Ecology Letters 8: 715–721.

    Article  Google Scholar 

  • R Core Team, 2013. R: a language and environment for statistical computing, 3.0.1 ed. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Rahel, F. J., 2007. Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshwater Biology 52: 696–710.

    Article  Google Scholar 

  • Rothlisberger, J. D., W. L. Chadderton, J. McNulty & D. M. Lodge, 2010. Aquatic invasive species transport via trailered boats: what is being moved, who is moving it, and what can be done. Fisheries 35: 121–132.

    Article  Google Scholar 

  • Smart, R. M. & J. W. Barko, 1985. Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquatic Botany 21: 251–263.

    Article  Google Scholar 

  • van Valkenburg, J. L. C. H., R. M. M. Roijackers & R. Leonard, 2011. Cabomba caroliniana Gray in the Netherlands. 3rd International Symposium on Weeds and Invasive Plants, Ascona, Oct 2011: 6.

  • Vitousek, P. M., D. M. D’Antonio, L. L. Loope & R. Westbrooks, 1996. Biological invasions as global environmental change. American Scientist 84: 468–478.

    Google Scholar 

  • Wilson, C. E., S. J. Darbyshire & R. Jones, 2007. The biology of invasive alien plants in Canada. 7. Cabomba caroliniana A. Gray. Canadian Journal of Plant Science 87: 615–638.

    Article  Google Scholar 

  • Wilson, J. R. U., E. E. Dormontt, P. J. Prentis, A. J. Lowe & D. M. Richardson, 2009. Something in the way you move: dispersal pathways affect invasion success. Trends in Ecology & Evolution 24: 136–144.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Queensland Government and The Rural Industries Research and Development Corporation, RIRDC, Project No. PRJ-006986. Cameron Clarke and Christine Perrett provided invaluable assistance with conducting the experiments. I wish to thank an anonymous reviewer for the constructive comments that assisted greatly in improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias O. Bickel.

Additional information

Guest editors: Sidinei M. Thomaz, Katya E. Kovalenko, John E. Havel & Lee B. Kats / Aquatic Invasive Species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bickel, T.O. A boat hitchhiker’s guide to survival: Cabomba caroliniana desiccation resistance and survival ability. Hydrobiologia 746, 123–134 (2015). https://doi.org/10.1007/s10750-014-1979-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1979-1

Keywords

Navigation