Skip to main content
Log in

Relationships between ecosystem metabolism, benthic macroinvertebrate densities, and environmental variables in a sub-arctic Alaskan river

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Relationships between environmental variables, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate density in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor variables for metabolism rates and benthic macroinvertebrate density and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important variable for predicting benthic macroinvertebrate density and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate density was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adler, P. H. & D. C. Currie, 2008. Simuliidae. In Merritt, R. W., K. W. Cummins & M. B. Berg (eds), An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque: 825–845.

    Google Scholar 

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC.

    Google Scholar 

  • Baumgartner, D. & K. O. Rothhaupt, 2003. Predictive length-dry mass regressions for freshwater invertebrates in a pre-alpine lake littoral. International Review of Hydrobiology 88: 453–463.

    Article  Google Scholar 

  • Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  • Betts, E. F. & J. B. Jones, 2009. Impact of wildfire on stream nutrient chemistry and ecosystem metabolism in boreal forest catchments of interior Alaska. Arctic Antarctic and Alpine Research 41: 407–417.

    Article  Google Scholar 

  • Brase, A. L. J. & M. Doxey, 2006. Salmon studies in the Chena, Chatanika, Delta Clearwater, and Salcha Rivers, 2004 and 2005. Fishery Data Series No. 06-61, Alaska Department of Fish and Game, Divisions of Sport Fish and Commercial Fisheries.

  • Breiman, L., 2001. Random forests. Machine Learning 45: 5–32.

    Article  Google Scholar 

  • Bunn, S. E., P. M. Davies & T. D. Mosisch, 1999. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater Biology 41: 333–345.

    Article  Google Scholar 

  • Burgherr, P. & E. I. Meyer, 1997. Regression analysis of linear body dimensions vs. dry mass in stream macroinvertebrates. Archiv Fur Hydrobiologie 139: 101–112.

    Google Scholar 

  • Cai, Y. H., L. D. Guo, T. A. Douglas & T. E. Whitledge, 2008. Seasonal variations in nutrient concentrations and speciation in the Chena River Alaska. Journal of Geophysical Research 113: G03035.

    Article  Google Scholar 

  • Cummins, K. W., R. W. Merritt & M. B. Berg, 2008. Ecology and distribution of aquatic insects. In Merritt, R. W., K. W. Cummins & M. B. Berg (eds), An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque: 105–122.

    Google Scholar 

  • Cutler, D. R., T. C. Edwards, K. H. Beard, A. Cutler & K. T. Hess, 2007. Random forests for classification in ecology. Ecology 88: 2783–2792.

    Article  PubMed  Google Scholar 

  • Elith, J., J. R. Leathwick & T. Hastie, 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–813.

    Article  PubMed  CAS  Google Scholar 

  • Fellows, C. S., H. M. Valett & C. N. Dahm, 2001. Whole-stream metabolism in two montane streams: contribution of the hyporheic zone. Limnology and Oceanography 46: 523–531.

    Article  Google Scholar 

  • Fellows, C. S., J. E. Clapcott, J. W. Udy, S. E. Bunn, B. D. Harch, M. J. Smith & P. M. Davies, 2006. Benthic metabolism as an indicator of stream ecosystem health. Hydrobiologia 572: 71–87.

    Article  Google Scholar 

  • Ferrington, L. C., M. B. Berg & W. P. Coffman, 2008. Chironomidae. In Merritt, R. W., K. W. Cummins & M. B. Berg (eds), An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque: 847–989.

    Google Scholar 

  • Fuller, R. L., B. P. Kennedy & C. Nielsen, 2004. Macroinvertebrate responses to algal and bacterial manipulations in streams. Hydrobiologia 523: 113–126.

    Article  Google Scholar 

  • Gende, S. M., R. T. Edwards, M. F. Willson & M. S. Wipfli, 2002. Pacific salmon in aquatic and terrestrial ecosystems. BioScience 52: 917–928.

    Article  Google Scholar 

  • Genereux, D. P. & H. F. Hemond, 1992. Determination of gas exchange rate constants for a small stream on Walker Branch Watershed, Tennessee. Water Resources Research 28: 2365–2374.

    Article  CAS  Google Scholar 

  • Gruner, D. S., 2003. Regression of length and width to predict arthropod biomass in the Hawaiian Islands. Pacific Science 57: 325–336.

    Article  Google Scholar 

  • Guasch, H., E. Marti & S. Sabater, 1995. Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshwater Biology 33: 373–383.

    Article  Google Scholar 

  • Hastie, T., R. Tibshirani & J. Friedman, 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer, New York.

    Google Scholar 

  • Hawkins, C. P. & J. R. Sedell, 1981. Longitudinal and seasonal changes in functional organization of macroinvertebrate communities in four Oregon streams. Ecology 62: 387–397.

    Article  Google Scholar 

  • Izagirre, O., U. Agirre, M. Bermejo, J. Pozo & A. Elosegi, 2008. Environmental controls of whole-stream metabolism identified from continuous monitoring of Basque streams. Journal of the North American Benthological Society 27: 252–268.

    Article  Google Scholar 

  • Johnson, M. D. & A. M. Strong, 2000. Length-weight relationships of Jamaican arthropods. Entomological News 111: 270–281.

    Google Scholar 

  • Kawabata, K. & J. Urabe, 1998. Length–weight relationships of eight freshwater planktonic crustacean species in Japan. Freshwater Biology 39: 199–205.

    Article  Google Scholar 

  • Konrad, C. P., A. M. D. Brasher & J. T. May, 2008. Assessing streamflow characteristics as limiting factors on benthic invertebrate assemblages in streams across the western United States. Freshwater Biology 53: 1983–1998.

    Article  Google Scholar 

  • Kosinski, R. J., 1984. A comparison of the accuracy and precision of several open-water oxygen productivity techniques. Hydrobiologia 119: 139–148.

    Article  CAS  Google Scholar 

  • Marzolf, E. R., P. J. Mulholland & A. D. Steinman, 1994. Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Canadian Journal of Fisheries and Aquatic Sciences 51: 1591–1599.

    Article  Google Scholar 

  • Marzolf, E. R., P. J. Mulholland & A. D. Steinman, 1998. Reply: Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Canadian Journal of Fisheries and Aquatic Sciences 55: 1786–1787.

    Article  CAS  Google Scholar 

  • McCutchan, J. H. & W. M. Lewis, 2002. Relative importance of carbon sources for macroinvertebrates in a Rocky Mountain stream. Limnology and Oceanography 47: 742–752.

    Article  Google Scholar 

  • Meyer, E., 1989. The relationship between body length parameters and dry mass in running water invertebrates. Archiv Fur Hydrobiologie 117: 191–203.

    Google Scholar 

  • Miyasaka, H., M. Genkai-Kato, Y. Miyake, D. Kishi, I. Katano, H. Doi, S. Y. Ohba & N. Kuhara, 2008. Relationships between length and weight of freshwater macroinvertebrates in Japan. Limnology 9: 75–80.

    Article  Google Scholar 

  • Mulholland, P. J., C. S. Fellows, J. L. Tank, N. B. Grimm, J. R. Webster, S. K. Hamilton, E. Marti, L. Ashkenas, W. B. Bowden, W. K. Dodds, W. H. Mcdowell, M. J. Paul & B. J. Peterson, 2001. Inter-biome comparison of factors controlling stream metabolism. Freshwater Biology 46: 1503–1517.

    Article  CAS  Google Scholar 

  • Murphy, M. L., 2001. Primary production. In Naiman, R. J. & R. E. Bilby (eds), River Ecology and Management: Lessons from the Pacific Coastal Ecoregion. Springer, New York: 144–168.

    Google Scholar 

  • Murphy, M. A., J. S. Evans & A. Storfer, 2010. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91: 252–261.

    Article  PubMed  Google Scholar 

  • Niyogi, D. K., W. M. Lewis & D. M. McKnight, 2002. Effects of stress from mine drainage on diversity, biomass, and function of primary producers in mountain streams. Ecosystems 5: 554–567.

    CAS  Google Scholar 

  • Odum, H., 1956. Primary production in flowing waters. Limnology and Oceanography 1: 102–117.

    Article  Google Scholar 

  • Oswood, M. W., J. B. Reynolds, J. D. Laperriere, R. Holmes, J. Hallberg & J. H. Triplehorn, 1992. Water quality and ecology of the Chena River Alaska. In Becker, C. & D. Neitzel (eds), Water Quality in North American River Systems. Battelle Press, Columbus: 5–27.

    Google Scholar 

  • R Development Core Team, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Roberts, B. J., P. J. Mulholland & W. R. Hill, 2007. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10: 588–606.

    Article  CAS  Google Scholar 

  • Sabo, J. L., J. L. Bastow & M. E. Power, 2002. Length-mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. Journal of the North American Benthological Society 21: 336–343.

    Article  Google Scholar 

  • Slavik, K., B. J. Peterson, L. A. Deegan, W. B. Bowden, A. E. Hershey & J. E. Hobbie, 2004. Long-term responses of the Kuparuk River ecosystem to phosphorus fertilization. Ecology 85: 939–954.

    Article  Google Scholar 

  • Stevenson, R., 1990. Benthic algal community dynamics in a stream during and after a spate. Journal of the North American Benthological Society 9: 277–288.

    Article  Google Scholar 

  • Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29: 118–146.

    Google Scholar 

  • Tiegs, S. D., E. Y. Campbell, P. S. Levi, J. Ruegg, M. E. Benbow, D. T. Chaloner, R. W. Merritt, J. L. Tank & G. A. Lamberti, 2009. Separating physical disturbance and nutrient enrichment caused by Pacific salmon in stream ecosystems. Freshwater Biology 54: 1864–1875.

    Article  CAS  Google Scholar 

  • Townsend, C. R., M. R. Scarsbrook & S. Dolédec, 1997. The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnology and Oceanography 42: 938–949.

    Article  Google Scholar 

  • Uehlinger, U., 2006. Annual cycle and inter-annual variability of gross primary production and ecosystem respiration in a floodprone river during a 15-year period. Freshwater Biology 51: 938–950.

    Article  CAS  Google Scholar 

  • Uye, S., 1982. Length-weight relationships of important zooplankton from the inland Sea of Japan. Journal of the Oceanographical Society of Japan 38: 149–158.

    Article  Google Scholar 

  • Waltz, R. D. & S. K. Burian, 2008. Ephemeroptera. In Merritt, R. W., K. W. Cummins & M. B. Berg (eds), An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque: 181–236.

    Google Scholar 

  • Wipfli, M. S., J. Hudson & J. Caouette, 1998. Influence of salmon carcasses on stream productivity: response of biofilm and benthic macroinvertebrates in southeastern Alaska, U.S.A. Canadian Journal of Fisheries and Aquatic Sciences 55: 1503–1511.

    Article  Google Scholar 

  • Wipfli, M. S., J. P. Hudson, D. T. Chaloner & J. R. Caouette, 1999. Influence of salmon spawner densities on stream productivity in Southeast Alaska. Canadian Journal of Fisheries and Aquatic Sciences 56: 1600–1611.

    Google Scholar 

  • Young, R. G. & A. D. Huryn, 1996. Interannual variation in discharge controls ecosystem metabolism along a grassland river continuum. Canadian Journal of Fisheries and Aquatic Sciences 53: 2199–2211.

    Article  Google Scholar 

  • Young, R. G. & A. D. Huryn, 1998. Comment: Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Canadian Journal of Fisheries and Aquatic Sciences 55: 1784–1785.

    Article  CAS  Google Scholar 

  • Young, R. G. & A. D. Huryn, 1999. Effects of land use on stream metabolism and organic matter turnover. Ecological Applications 9: 1359–1376.

    Article  Google Scholar 

  • Young, R. G., C. D. Matthaei & C. R. Townsend, 2008. Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. Journal of the North American Benthological Society 27: 605–625.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. Jeremy Jones for insightful comments on this manuscript, Dr. Arny Blanchard for assistance with statistical analyses, and Matthew Evenson for helpful input throughout the duration of this project. We thank the Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative and the Alaska Department of Fish and Game for funding and technical support, as well as Audra Brase, Virgil Davis, Mel Durrett, Matt Evenson, TJ Fayton, Stephanie Fischer, Bessie Green, Laura Gutierrez, Jason Neuswanger, Megan Perry, Erika Rader, James Riedman, Dave Roon, James Savereide, Kyle Schumann, and Katie Skogen for help in the field and lab. Thanks to Dr. Abby Powell and several anonymous students at the University of Alaska Fairbanks for commenting on and improving an earlier draft of this manuscript. Water chemistry analytical data were provided by the Cooperative Chemical Analytical Laboratory established by memorandum of understanding no. PNW-82-187 between the U.S. Forest Service Pacific Northwest Research Station and the Department of Forest Ecosystems and Society, Oregon State University. Any use of trade firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily R. Benson.

Additional information

Handling editor: Nicholas R. Bond

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, E.R., Wipfli, M.S., Clapcott, J.E. et al. Relationships between ecosystem metabolism, benthic macroinvertebrate densities, and environmental variables in a sub-arctic Alaskan river. Hydrobiologia 701, 189–207 (2013). https://doi.org/10.1007/s10750-012-1272-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1272-0

Keywords

Navigation