Skip to main content
Log in

Development of genomic resources for the phylogenetic analysis of the Brachionus plicatilis species complex (Rotifera: Monogononta)

  • ROTIFERA XII
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

There has been a substantial leap forward in the quantity and quality of genomic resources available for research on rotifers in recent years. We used available genomic and bioinformatics resources to identify variable regions of the genome to design PCR and sequencing primers for the Brachionus plicatilis complex. We then tested their suitability for the study of systematics of this group. Eight amplified successfully for members of the B. plicatilis complex. We sequenced the amplified products, constructed a concatenated alignment (5,511 bp) and carried out phylogenetic analyses. The resulting tree, based on mitochondrial and nuclear genes for 11 clones of six species, was well supported even at relatively deep nodes, contrasting with results of previous studies using only mitochondrial genes, which provide little phylogenetic information for the deepest nodes. The same procedure could be used to design primers for more conserved regions to be used in a wider range of rotifer groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anisimova, M. & O. Gascuel, 2006. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Systematic Biology 55: 539–552.

    Article  PubMed  Google Scholar 

  • Arkhipova, I. R. & M. Meselson, 2000. Transposable elements in sexual and ancient asexual taxa. Proceedings of the National Academy of Sciences of the United States of America 97: 14473–14477.

    Article  CAS  PubMed  Google Scholar 

  • Arkhipova, I. R. & M. Meselson, 2005. Diverse DNA transposons in rotifers of the class Bdelloidea. Proceedings of the National Academy of Sciences of the United States of America 102: 11781–11786.

    Article  CAS  PubMed  Google Scholar 

  • Arkhipova, I. R., K. I. Pyatkov, M. Meselson & M. B. Evgen’ev, 2003. Retroelements containing introns in diverse invertebrate taxa. Nature Genetics 33: 123–124.

    Article  CAS  PubMed  Google Scholar 

  • Bernal, A., U. Ear & N. Kyrpides, 2001. Genomes OnLine Database (GOLD): a monitor of genome projects world-wide. Nucleic Acids Research 29: 126–127.

    Article  CAS  PubMed  Google Scholar 

  • Campillo, S., E. M. García-Roger, M. J. Carmona, A. Gómez & M. Serra, 2009. Selection on life-history traits and genetic population divergence in rotifers. Journal of Evolutionary Biology 22: 2542–2553.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, P. C., R. V. Glórica, A. B. Miranda & W. M. Degrave, 2005. Squid—a simple bioinformatics grid. BMC Bioinformatics 6: 197.

    Article  PubMed  Google Scholar 

  • Denekamp, N. Y., M. A. S. Thorne, M. S. Clark, M. Kube, R. Reinhardt & E. Lubzens, 2009. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10: 108.

    Article  PubMed  Google Scholar 

  • Dunn, C. W., A. Hejnol, D. Q. Matus, K. Pang, W. E. Browne, S. A. Smith, E. Seaver, G. W. Rouse, M. Obst, G. D. Edgecombe, M. V. Sorensen, S. H. D. Haddock, A. Schmidt-Rhaesa, A. Okusu, R. M. Kristensen, W. C. Wheeler, M. Q. Martindale & G. Giribet, 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452: 745–749.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J., 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17: 376–386.

    Article  Google Scholar 

  • Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    CAS  PubMed  Google Scholar 

  • Fontaneto, D., C. Boschetti & C. Ricci, 2008. Cryptic diversification in ancient asexuals: evidence from the bdelloid rotifer Philodina flaviceps. Journal of Evolutionary Biology 21: 580–587.

    Article  CAS  PubMed  Google Scholar 

  • García-Varela, M. & S. A. Nadler, 2006. Phylogenetic relationships among Syndermata inferred from nuclear and mitochondrial gene sequences. Molecular Phylogenetics and Evolution 40: 61–72.

    Article  PubMed  Google Scholar 

  • García-Varela, M., G. de Pérez-Ponce León, P. de la Torre, M. P. Cummings, S. S. S. Sarma & J. P. Laclette, 2000. Phylogenetic relationships of Acanthocephala based on analysis of 18S ribosomal RNA gene sequences. Journal of Molecular Evolution 50: 532–540.

    PubMed  Google Scholar 

  • Giribet, G., M. V. Sørensen, P. Funch, R. M. Kristensen & W. Sterrer, 2004. Investigations into the phylogenetic position of Micrognathozoa using four molecular loci. Cladistics 20: 1–13.

    Article  Google Scholar 

  • Gladyshev, E. A. & I. R. Arkhipova, 2007. Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes. Proceedings of the National Academy of Sciences of the United States of America 104: 9352–9357.

    Article  CAS  PubMed  Google Scholar 

  • Gladyshev, E. A., M. Meselson & I. R. Arkhipova, 2006. A deep-branching clade of retrovirus-like retrotransposons in bdelloid rotifers. Gene 390: 136–145.

    Article  PubMed  Google Scholar 

  • Gladyshev, E. A., M. Meselson & I. R. Arkhipova, 2008. Massive horizontal gene transfer in bdelloid rotifers. Science 320: 1210–1213.

    Article  CAS  PubMed  Google Scholar 

  • Gómez, A., G. J. Adcock, D. H. Lunt & G. R. Carvalho, 2002a. The interplay between colonization history and gene flow in passively dispersing zooplankton: microsatellite analysis of rotifer resting egg bank. Journal of Evolutionary Biology 15: 158–171.

    Article  Google Scholar 

  • Gómez, A., G. R. Carvalho & D. H. Lunt, 2000. Phylogeography and regional endemism of a passively dispersing zooplankter: mitochondrial DNA variation in rotifer resting egg banks. Proceedings of the Royal Society of London 267: 2189–2197.

    Article  Google Scholar 

  • Gómez, A., C. Clabby & G. R. Carvalho, 1998. Isolation and characterization of microsatellite loci in a cyclically parthenogenetic rotifer, Brachionus plicatilis. Molecular Ecology 7: 1613–1621.

    Article  Google Scholar 

  • Gómez, A., M. Serra, G. R. Carvalho & D. H. Lunt, 2002b. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56: 1431–1444.

    PubMed  Google Scholar 

  • Guidon, S. & O. Gascuel, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.

    Article  Google Scholar 

  • Hasegawa, M., K. Kishino & T. Yano, 1985. Dating the human-ape splitting by a molecular clock of mithocondrial DNA. Journal of Molecular Evolution 22: 160–174.

    Article  CAS  PubMed  Google Scholar 

  • Hur, J. H., K. Van Doninck, M. L. Mandigo & M. Meselson, 2009. Degenerate tetraploidy was established before bdelloid rotifer families diverged. Molecular Biology and Evolution 26: 375–383.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko, G., S. Kinoshita, T. Yoshinaga, K. Tsukamoto & S. Watabe, 2002. Changes in expression patterns of stress protein genes during population growth of the rotifer Brachionus plicatilis. Fisheries Science 68: 1317–1323.

    Article  CAS  Google Scholar 

  • Kaneko, G., T. Yoshinaga, Y. Yanagawa, S. Kinoshita, K. Tsukamoto & S. Watabe, 2005. Molecular characterization of Mn-superoxide dismutase and gene expression studies in dietary restricted Brachionus plicatilis rotifers. Hydrobiologia 546: 117–123.

    Article  CAS  Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M., 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences of the United States of America 78: 454–458.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy, N., D. Brown, D. Kirshner & K. Sjölander, 2006. PhyloFacts: an online structural phylogenomic encyclopaedia for protein functional and structural classification. Genome Biology 7: R83.

    Article  PubMed  Google Scholar 

  • Kumar, S., K. Tamura & M. Nei, 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150–163.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, C. D., S. J. Kemp & D. J. S. Montagnes, 2005. An interdisciplinary approach to assess the functional diversity of free-living microscopic eukaryotes. Aquatic Microbial Ecology 41: 67–77.

    Article  Google Scholar 

  • Mark Welch, D. B., J. L. Mark Welch & M. Meselson, 2008. Evidence for degenerate tetraploidy in bdelloid rotifers. Proceedings of the National Academy of Sciences of the United States of America 105: 5145–5149.

    Article  PubMed  Google Scholar 

  • Palumbi, S. R., 1996. Nucleic acids II: the polymerase chain reaction. In Hillis, D. M., C. Moritz & B. K. Mable (eds), Molecular Systematics. Sinauer, Sunderland: 205–247.

    Google Scholar 

  • Papakostas, S., A. Triantafyllidis, I. Kappas & T. Abatzopoulos, 2005. The utility of the 16S gene in investigating cryptic speciation within the Brachionus plicatilis species complex. Marine Biology 147: 1129–1139.

    Article  CAS  Google Scholar 

  • Paps, J., J. Bauñà & M. Riutort, 2009. Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha. Molecular Biology and Evolution. doi:10.1093/molbev/msp150.

  • Posada, D., 2008. jModeltest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

    Article  CAS  PubMed  Google Scholar 

  • Pouchkina-Stantcheva, N. N. & A. Tunnacliffe, 2005. Spliced leader RNA-mediated trans-splicing in phylum Rotifera. Molecular Biology and Evolution 22: 1482–1489.

    Article  CAS  PubMed  Google Scholar 

  • Ronquist, F. & J. P. Huelsenbeck, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Sørensen, M. V. & G. Giribet, 2006. A modern approach to rotiferan phylogeny: combining morphological and molecular data. Molecular Phylogenetics and Evolution 40: 585–608.

    Article  PubMed  Google Scholar 

  • Sørensen, M. V., W. Sterrer & G. Giribet, 2006. Gnathostomulid phylogeny inferred from a combined approach of four molecular loci and morphology. Cladistics 22: 32–58.

    Article  Google Scholar 

  • Suatoni, E., S. Vicario, S. Rice, T. W. Snell & A. Caccone, 2006. An analysis of species boundaries and biogeographic patterns in a cryptic species complex: the rotifer—Brachionus plicatilis. Molecular Phylogenetics and Evolution 41: 86–98.

    Article  CAS  PubMed  Google Scholar 

  • Suga, K., D. B. Mark Welch, Y. Tanaka, Y. Sakakura & A. Hagiwara, 2007. Analysis of expressed sequence tags of the cyclically parthenogenetic rotifer Brachionus plicatilis. PLOS One 2: e671.

    Article  PubMed  Google Scholar 

  • Suga, K., D. B. Mark Welch, Y. Tanaka, Y. Sakakura & A. Hagiwara, 2008. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis. Molecular Biology and Evolution 25: 1129–1137.

    Article  CAS  PubMed  Google Scholar 

  • Tavaré, S., 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. In Miura, R. M. (ed.), Some Mathematical Questions in Biology: DNA Sequence Analysis. American Mathematical Society, Providence: 57–86.

    Google Scholar 

  • Thiel, T., W. Michalek, R. K. Varshney & A. Graner, 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical Applied Genetics 106: 411–422.

    CAS  Google Scholar 

  • Witek, A., H. Herlyn, A. Meyer, L. Boell, G. Bucher & T. Hakeln, 2008. EST based phylogenomics of Syndermata questions monophyly of Eurotatoria. BMC Evolutionary Biology 8: 345.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

AG was funded by a NERC Advanced Fellowship, and J. M-P by a short stay travel grant and a fellowship by the Spanish Ministerio de Ciencia y Tecnología (BES2004-5248). We are grateful to Katie Tindall and David Lunt for their invaluable advice in bioinformatics resources, David Lunt provided constructive comments on previous versions of the manuscript and Michael Monaghan, Stuart Longhorn and Alexander Witek gave valuable suggestions that improved this manuscript. Mónica Medina kindly provided unpublished mitochondrial sequences. We thank David Mark Welch for making available to us an unpublished B. manjavacas EST library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Montero-Pau.

Additional information

Guest editors: N. Walz, R. Adrian, J.J. Gilbert, M.T. Monaghan, G. Weithoff & H. Zimmermann-Timm / Rotifera XII: New aspects in rotifer evolution, genetics, reproduction, ecology and biogeography

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montero-Pau, J., Gómez, A. Development of genomic resources for the phylogenetic analysis of the Brachionus plicatilis species complex (Rotifera: Monogononta). Hydrobiologia 662, 43–50 (2011). https://doi.org/10.1007/s10750-010-0485-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0485-3

Keywords

Navigation