Skip to main content

Advertisement

Log in

Bacterial production in the Lower Mississippi River: importance of suspended sediment and phytoplankton biomass

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The roles and metabolic activity of heterotrophic bacteria, along with factors controlling their activity, are poorly known for large, turbid rivers. The aim of this study was to evaluate temporal patterns in heterotrophic bacterial production (BP) in the main channel of the Lower Mississippi River (LMR) in relation to several seasonally dynamic environmental factors. We hypothesized that whole-water BP would vary with levels of temperature, as well as phytoplankton biomass and suspended sediment concentration. Further, we hypothesized that bacteria attached to suspended sediment would comprise an important component of whole-water BP, their importance varying with sediment concentration. Measurements were made at three locations on the LMR for up to 29 months. Bacterial production in whole-water ranged over an order of magnitude between summer and winter, with little variation among sites. Peaks in whole-water BP were associated with periods of high suspended sediment concentrations in spring, and elevated phytoplankton biomass in summer. Attached BP was correlated with all the measures of sediment concentration, especially particulate phosphorus, and accounted for a large majority of water-column BP. After temperature, the only positive correlate of free-living cells was with phytoplankton biomass. Rates of BP in the LMR during summer were much higher than measurements made previously in the Mississippi River plume, similar to the Hudson River, but lower than in three large tributaries of the LMR. Determination of bacterial population dynamics is an essential step in analysis of the food web structure and biogeochemical processes of large rivers. This is the first study of heterotrophic bacterial production in the main channel of the LMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abell, R. A., D. M. Olson, E. Dinerstein, P. T. Hurley, J. T. Diggs, W. Eichbaum, S. Walters, W. Wettengel, T. Allnutt, C. J. Loucks & P. Hedao, 2000. Freshwater ecoregions of North America: a conservation assessment. Island Press, Washington, DC.

    Google Scholar 

  • Allison, M. A., T. S. Bianchi, B. A. McKee & T. P. Sampere, 2007. Carbon burial on river-dominated continental shelves: impact of historical changes in sediment loading adjacent to the Mississippi River. Geophysical Research Letters 34: L01606.

    Article  Google Scholar 

  • Amon, R. M. W. & R. Benner, 1998. Seasonal patterns of bacterial abundance and production in the Mississippi River plume and their importance for the fate of enhanced primary production. Microbial Ecology 35: 289–300.

    Article  CAS  PubMed  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Battin, T. J., L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold & F. Sabater, 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience 1: 95–100.

    Article  CAS  Google Scholar 

  • Basu, B. K. & F. R. Pick, 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnology and Oceanography 41: 1572–1577.

    CAS  Google Scholar 

  • Bayley, P. B., 1995. Understanding large river-floodplain ecosystems. Bioscience 45: 153–158.

    Article  Google Scholar 

  • Benner, R., S. Opsahl, G. Chin-Leo, J. E. Richey & B. R. Forsberg, 1995. Bacterial carbon metabolism in the Amazon River system. Limnology and Oceanography 40: 1262–1270.

    Google Scholar 

  • Bianchi, T. S. & M. A. Allison, 2009. Large-river delta-front estuaries as natural “recorders” of global environmental change. Proceedings National Academy of Sciences 106: 8085–8092.

    Google Scholar 

  • Bird, D. F., 1999. A critical examination of substoichiometric isotope dilution analysis using thymidine and leucine. Scientia Marina 63: 6–70.

    Article  Google Scholar 

  • Castillo, M. M., J. D. Allan, R. L. Sinsabaugh & G. W. Kling, 2004. Seasonal and interannual variation of bacterial production in lowland rivers of the Orinoco basin. Freshwater Biology 49: 1400–1414.

    Article  Google Scholar 

  • Chin-Leo, G. & R. Benner, 1992. Enhanced bacterioplankton production and respiration at intermediate salinities in the Mississippi River plume. Marine Ecology Progress Series 87: 87–103.

    Article  Google Scholar 

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43: 1–10.

    Article  Google Scholar 

  • Cole, J. J., N. F. Caraco & B. L. Peierls, 1992. Can phytoplankton maintain a positive carbon balance in a turbid freshwater, tidal estuary? Limnology and Oceanography 37: 1608–1617.

    Article  CAS  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters in the terrestrial carbon budget. Ecosystems 10: 171–184.

    Article  CAS  Google Scholar 

  • Crump, B. C. & J. A. Baross, 1996. Particle-attached bacteria and heterotrophic plankton associated with the Columbia River estuarine turbidity maxima. Marine Ecology Progress Series 138: 265–273.

    Article  Google Scholar 

  • Crump, B. C., J. A. Baross & C. A. Simenstad, 1998. Dominance of particle-attached bacteria in the Columbia River estuary, USA. Aquatic Microbial Ecology 14: 7–18.

    Article  Google Scholar 

  • Crump, B. C., E. V. Armbrust & J. A. Baross, 1999. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Applied and Environmental Microbiology 65: 3192–3204.

    CAS  PubMed  Google Scholar 

  • Dagg, M., R. Sato, H. Liu, T. S. Bianchi, R. Green & R. Powell, 2008. Microbial food web contributions to bottom water hypoxia in the northern Gulf of Mexico. Continental Shelf Research 28: 1127–1137.

    Article  Google Scholar 

  • del Giorgio, P. A. & M. L. Pace, 2008. Relative independence of dissolved organic carbon transport and processing in a large temperate river: the Hudson River as both pipe and reactor. Limnology and Oceanography 53: 185–197.

    CAS  Google Scholar 

  • del Giorgio, P. A., M. L. Pace & D. Fischer, 2006. Relationship of bacterial growth efficiency to spatial variation in bacterial activity in the Hudson River. Aquatic Microbial Ecology 45: 55–67.

    Article  Google Scholar 

  • Edwards, R. T., 1987. Sestonic bacteria as a food source for filtering invertebrates in two southeastern blackwater rivers. Limnology and Oceanography 32: 221–234.

    Article  CAS  Google Scholar 

  • Edwards, R. T. & J. L. Meyer, 1986. Production and turnover of planktonic bacteria in two southeastern blackwater rivers. Applied and Environmental Microbiology 52: 1317–1323.

    PubMed  CAS  Google Scholar 

  • Findlay, S. E. G., J. L. Meyers & R. T. Edwards, 1984. Measuring bacterial production via rate of incorporation of [3H]thymidine into DNA. Journal of Microbiological Methods 2: 57–72.

    Article  CAS  Google Scholar 

  • Findlay, S. E. G., M. L. Pace, D. Lints, J. J. Cole, N. F. Caraco & B. Peierls, 1991. Weak coupling of bacterial and algal production in a heterotrophic ecosystem: the Hudson River estuary. Limnology and Oceanography 36: 268–278.

    Article  Google Scholar 

  • Garneau, M.-È., W. F. Vincent, R. Terrado & C. Lovejoy, 2009. Importance of particle-associated bacterial heterotrophy in a coastal Arctic ecosystem. Journal of Marine Sciences 75: 185–197.

    Google Scholar 

  • Goolsby, D. A., W. A. Battaglin, G. B. Lawrence, R. S. Artz, B. T. Aulenbach, R. P. Hooper, D. R. Keeney & G. J. Stensland, 1999. Gulf of Mexico Hypoxia Assessment: Topic #3, Flux and Sources of Nutrients in the Mississippi-Atchafalaya River Basin: Topic 3 Report for the Integrated Assessment of Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program, Silver Spring, MD.

    Google Scholar 

  • Hamdan, L. J. & R. B. Jonas, 2006. Seasonal and interannual dynamics of free-living bacterioplankton and microbially labile organic carbon along the salinity gradient of the Potomac River. Estuaries and Coasts 29: 40–53.

    CAS  Google Scholar 

  • Henebry, M. S. & R. W. Gordon, 1989. Bacterial biomass and production in Mississippi River Pool 19. Hydrobiologia 182: 15–23.

    Article  CAS  Google Scholar 

  • Jochem, F. J., 2003. Photo- and heterotrophic pico- and nanoplankton in the Mississippi River plume: distribution and grazing activity. Journal of Plankton Research 25: 1201–1214.

    Article  CAS  Google Scholar 

  • Jones, J. G., 1996. Microbial processes in large rivers. Archives of Hydrobiology Supplement 113 Large Rivers 10: 67–77.

    Google Scholar 

  • Kirchman, D. L., 1993. Leucine incorporation as a measure of biomass production by heterotrophic bacteria. In Kemp, P. F., B. F. Sherr & E. B. Sherr (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  • Koch, R. W., P. A. Bukaveckas & D. L. Guelda, 2007. Importance of phytoplankton carbon to heterotrophic bacteria in the Ohio, Cumberland, and Tennessee rivers, USA. Hydrobiologia 586: 79–91.

    Article  CAS  Google Scholar 

  • Kritzberg, E. S., J. J. Cole, M. L. Pace & W. Granéli, 2005. Does authochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquatic Microbial Ecology 38: 103–111.

    Article  Google Scholar 

  • Luef, B., F. Aspetsberger, T. Hein, F. Huber & P. Peduzzi, 2007. Impact of hydrology on free-living and particle-associated microorganisms in a river floodplain system (Danube, Austria). Freshwater Biology 52: 1043–4057.

    Article  Google Scholar 

  • Maranger, R. J., M. L. Pace, P. A. del Giorgio, N. F. Caraco & J. J. Cole, 2004. Longitudinal spatial patterns of bacterial production and respiration in a large-river-estuary: Implications for ecosystem carbon consumption. Ecosystems 8: 1–14.

    Google Scholar 

  • Ochs, C. A., 2002. Planktonic microorganisms: bacterioplankton. In Bitton, G. (ed.), Encyclopedia of Environmental Microbiology. John Wiley, N.Y.

    Google Scholar 

  • Pakulski, J. D., R. Benner, R. Amon, B. Eadie & T. Whitledge, 1995. Community metabolism and nutrient cycling in the Mississippi River plume: evidence for intense nitrification at intermediate salinities. Marine Ecology Progress Series 117: 207–218.

    Article  Google Scholar 

  • Pakulski, J. D., R. Benner, T. Whitledge, R. Amon, B. Eadie, L. Cifuentes, J. Ammerman & D. Stockwell, 2000. Microbial metabolism and nutrient cycling in the Mississippi and Atchafalaya River plumes. Estuarine, Coastal and Shelf Science 50: 173–184.

    Article  CAS  Google Scholar 

  • Peduzzi, P., F. Aspetsberger, T. Hein, F. Huber, S. Kargl-Wagner, B. Luef & Y. Tachkova, 2008. Dissolved organic matter (DOM) and bacterial growth in floodplains of the Danube River under varying hydrological connectivity. Fundamental and Applied Limnology 171: 49–61.

    Article  CAS  Google Scholar 

  • Porter, K. G. & Y. G. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Presley, B. J., J. H. Refrey & R. F. Shokes, 1980. Heavy metal inputs to Mississippi Delta sediments. Water, Air, and Soil Pollution 13: 481–494.

    Article  CAS  Google Scholar 

  • Raymond, P. A. & J. J. Cole, 2003. Increase in the export of alkalinity from North America’s largest river. Science 301: 88–91.

    Article  CAS  PubMed  Google Scholar 

  • Roland, F. & J. J. Cole, 1999. Regulation of bacterial growth efficiency in a large turbid estuary. Aquatic Microbial Ecology 20: 31–38.

    Article  Google Scholar 

  • Runner, M. S., D. P. Turnipseed & R. H. Coupe, 2002. Streamflow and Nutrient Data for the Yazoo River below Steele Bayou near Long Lake, Mississippi, 1996-2000. U.S. Geological Survey Water-Resources Investigations Report 02-4215.

  • Servais, P., 1989. Bacterioplankton biomass and production in the River Meuse (Belgium). Hydrobiologia 174: 99–110.

    Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51: 201–213.

    Article  CAS  Google Scholar 

  • Smith, D. C. & F. Azam, 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbial Food Webs 6: 107–114.

    Google Scholar 

  • Solorzano, L. & J. H. Sharp, 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural water. Limnology and Oceanography 24: 754–758.

    Article  Google Scholar 

  • Turner, R. E. & N. N. Rabalais, 2003. Linking landscape and water quality in the Mississippi River Basin for 200 years. Bioscience 53: 563–572.

    Article  Google Scholar 

  • Turner, R. E. & N. N. Rabalais, 2004. Suspended sediment, C, N, P, and Si yields from the Mississippi River Basin. Hydrobiologia 511: 79–89.

    Article  CAS  Google Scholar 

  • U.S. Army Corps of Engineers New Orleans District: River Velocities: http://www.mvn.usace.army.mil/eng/edhd/no_bar.asp (15 June 2009).

  • Wetzel, R. G., 2001. Limnology. Academic Press, San Diego, CA.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses. Springer-Verlag, NY, NY.

    Google Scholar 

  • Williams, J. D., M. L. Warren Jr, K. S. Cummings, J. L. Harris & R. G. Neves, 1992. Conservation status of freshwater mussels in the United States and Canada. Fisheries 18: 6–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Technical assistance was provided by P. Carerro, N. Cramer, M. Medders, T. Moore, S. Morgan, M. Nelson, and L. Sullivan, all at the University of Mississippi. Intellectual stimulation was provided by J. Ruskey and P. Zimba. S. Smith and J. Hill of the USDA-ARS Sedimentation Laboratory in Oxford, MS, and D. Redaljie and M. Tuel of the University of Southern Mississippi, assisted with chemical analyses. We thank J. Cole for a valuable review of an earlier version of the manuscript. Financial assistance was provided by the Department of Biology, the Office of Research, and the College of Liberal Arts, University of Mississippi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford A. Ochs.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochs, C.A., Capello, H.E. & Pongruktham, O. Bacterial production in the Lower Mississippi River: importance of suspended sediment and phytoplankton biomass. Hydrobiologia 637, 19–31 (2010). https://doi.org/10.1007/s10750-009-9981-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9981-8

Keywords

Navigation