Skip to main content
Log in

Polymorphism and crypsis in the boring giant clam (Tridacna crocea): potential strategies against visual predators

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The giant clam, Tridacna crocea, is a sessile bivalve that bores into rocks and dead corals found on shallow Indo-Pacific coral reefs. Clams are a valuable prey item and T. crocea have developed at least two effective strategies to avoid predation: borrowing, and simultaneous rapid mantle withdrawal and valve contraction. Tridacna crocea obtain their food via photosynthetic products of symbiotic zooxanthellae and from filter-feeding. When they retract their mantles in response to predators, both photosynthesis and feeding are disrupted. Visible polymorphism and crypsis should reduce the frequency of attack and corresponding mantle retraction. In order to determine whether T. crocea is polymorphic and/or cryptic, samples (n = 573) from Tioman Island, Malaysia, were surveyed and photographed. Classification of images into categories of size and mantle colour/pattern demonstrates that T. crocea is colour/pattern polymorphic and morph frequency is size-dependent. Eight morphs were identified, but there also existed considerable intra-morph variation. Morphs with brown and/or and green pigments dominated the larger clam size category (>8 cm). Furthermore, red/blue/green (RGB) values extracted from a subset (n = 93) of digital images of T. crocea showed significant positive correlations between mantle and substrate colours (blue, r = 0.641; green, r = 0.540; red, r = 0.528), indicating background matching (crypsis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcazar, S. N., 1986. Observations on predators of giant clams (Bivalvia: Family Tridacnidae). Silliman Journal 33(1–4): 54–57.

    Google Scholar 

  • Cuthill, I. C., M. Stevens, J. Sheppard & T. Maddocks, 2005. Disruptive colouration and background pattern matching. Nature 434: 72–74.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, R. H. & C. W. Hawryshyn, 1990. Behavioural studies of fish vision: an analysis of vial capabilities. In Douglas, R. H. & M. B. A. Djamgoz (eds), The Visual System of Fish. Chapman & Hall, London: 373–418.

    Google Scholar 

  • Endler, J. A., 1978. A predator’s view of animal colour patterns. Evolutionary Biology 11: 319–364.

    Google Scholar 

  • Endler, J. A., 1984. Progressive background matching in moths, and a quantitative measure of crypsis. Biological Journal of the Linnean Society 22: 187–231.

    Article  Google Scholar 

  • Fankboner, P. V., 1981. Siphonal eyes of giant clams (Bivalvia: Tridacnidae) and their relationship to adjacent zooxanthellae. The Veliger 23(3): 245–249.

    Google Scholar 

  • Goodhart, C. B., 1987. Why are some snails visibly polymorphic, and others not? Biological Journal of the Linnean Society 31: 35–58.

    Article  Google Scholar 

  • Griffiths, D. J., H. Winsor & T. Luong-Van, 1992. Iridophores in the mantle of giant clams. Australian Journal of Zoology 40: 319–326.

    Article  Google Scholar 

  • Hogarth, P. J., 1978. Variation in carapace pattern of juvenile Carcinus maenas. Marine Biology 44: 337–343.

    Article  Google Scholar 

  • Huang, H., P. A. Todd & D. C. J. Yeo, 2007. Inter- and intraspecific variations in the facial colours of mangrove Perisesarma crabs (Crustacea: Brachyura: Sesarmidae). Hydrobiologia 598: 361–371.

    Article  Google Scholar 

  • Jasmi, A., 1999. An introduction on Pulau Tioman. Raffles Bulletin of Zoology Supplement 6: 3–4.

    Google Scholar 

  • Jeffrey, S. W. & F. T. Haxo, 1968. Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. Biological Bulletin 135(1): 149–165.

    Article  CAS  Google Scholar 

  • Jones, J. S., B. H. Leith & P. Rawlings, 1977. Polymorphism in Cepaea: a problem with too many solutions? Annual Reviews in Ecological System 8: 109–143.

    Article  Google Scholar 

  • Kiltie, R. A. & A. F. Laine, 1992. Visual textures, machine vision and animal camouflage. Trends in Ecology and Evolution 7: 163–166.

    Article  Google Scholar 

  • Ling, H., P. A. Todd, L. M. Chou, V. B. Yap & B. Sivaloganathan, 2008. The defensive role of scutes in juvenile fluted giant clams (Tridacna squamosa). Journal of Experimental Marine Biology and Ecology 359: 77–83.

    Article  Google Scholar 

  • Lloyd, D. G., 1984. Variation strategies of plants in heterogeneous environments. Biological Journal of the Linnaean Society 21: 357–385.

    Article  Google Scholar 

  • Lucas, J. S., 1988. Giant clams: description, distribution and life history. In Copland, J. W. & J. S. Lucas (eds), Giant clams in Asia and the Pacific. Australian Centre for International Agricultural Research Monographs No. 9, Canberra: 21–32.

  • Lucas, J. S., 1994. The biology, exploitation and mariculture of giant clams (Tridacnidae). Reviews in Fisheries Science 2: 181–223.

    Article  Google Scholar 

  • Mercier, A. & J. F. Hamel, 1996. The secret of the giant clam. Freshwater and Marine Aquarium 19(5): 112–113.

    Google Scholar 

  • Merilaita, S., 2003. Visual background complexity facilitates the evolution of camouflage. Evolution 57(6): 1248–1254.

    PubMed  Google Scholar 

  • Merilaita, S. & J. Lind, 2005. Background-matching and disruptive coloration and the evolution of cryptic colouration. Proceedings of the Royal Society of London, Series B 272: 665–670.

    Article  Google Scholar 

  • Merilaita, S. & G. D. Ruxton, 2009. Optimal apostatic selection: how should predators adjust to variation in prey frequencies? Animal Behaviour 77: 239–245.

    Article  Google Scholar 

  • Merilaita, S., A. Lyytinen & J. Mappes, 2001. Selection for cryptic coloration in a visually heterogeneous habitat. Proceedings of the Royal Society of London, Series B 268: 1925–1929.

    Article  CAS  Google Scholar 

  • Mingoa-Licuanan, S. S. & E. D. Gomez, 2002. Giant clam conservation in Southeast Asia. Tropical Coasts 3: 24–56.

    Google Scholar 

  • Nicol, J. A. C., 1989. The eyes of fishes. Oxford University Press, New York.

    Google Scholar 

  • Norton, J. H., M. A. Shepherd, H. M. Long & W. K. Fitt, 1992. The zooxanthellal tubular system in the giant clam. Biological Bulletin 183(3): 503–506.

    Article  Google Scholar 

  • Palma, A. T. & R. S. Steneck, 2001. Does variable coloration in juvenile marine crabs reduce the risk of predation? Ecology 82: 2961–2967.

    Google Scholar 

  • Papadakis, S. E., S. Abdul-Malek, R. E. Kamden & K. L. Yam, 2000. A versatile and inexpensive technique for measuring colour of foods. Food Technology 54: 48–51.

    Google Scholar 

  • Purchon, R. D. & D. E. A. Purchon, 1981. The marine shelled mollusca of West Malaysia and Singapore Part 1. General introduction and an account of the collecting stations. Journal of Mollusc Studies 47: 290–312.

    Google Scholar 

  • Richter, C., H. Roa-Quiaoit, C. Jantzen, M. Al-Zibdah & M. Kochzius, 2008. Collapse of a new living species of giant clam in the Red Sea. Current Biology 18: 1–6.

    Article  CAS  Google Scholar 

  • Rosewater, J., 1965. The family Tridacnidae in the Indo-Pacific. Info-Pacific Mollusca 1(6): 347–396.

    Google Scholar 

  • Ruxton, G. D., T. N. Sherratt & M. P. Speed, 2004. Avoiding attack—the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, New York.

    Google Scholar 

  • Schneider, J. A. & D. O. Foighil, 1999. Phylogeny of giant clams (Cardiidae: Tridacninae) based on partial mitochondrial 16S rDNA gene sequences. Molecular Phylogenetics and Evolution 13(1): 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Schoenberg, D. A. & R. K. Trench, 1980. Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. II. Morphological variation in Symbiodinium microadriaticum. Proceedings of the Royal Society of London, Series B 207(1169): 429–444.

    Article  Google Scholar 

  • Stasek, C. R., 1961. The form, growth and evolution of the Tridacnidae (giant clams). Archives de Zoologie Experimentale et Generale 101: 1–40.

    Google Scholar 

  • Sutton, D. C. & O. Hoegh-Guldberg, 1990. Host-zooxanthella interactions in four temperate marine invertebrate symbioses: assessment of effect of host extracts on symbionts. Biological Bulletin 178(2): 175–186.

    Article  Google Scholar 

  • Tan, S. H. & Z. Yasin, 2000. The reproduction cycle of Tridacna squamosa and Tridacna maxima in Rengis Island (Tioman Island), Malaysia. Journal of Shellfish Research 19(2): 963–966.

    Google Scholar 

  • Todd, P. A., R. J. Ladle, N. Lewin-Koh & L. M. Chou, 2004. Genotype × environment interactions in transplanted clones of the massive corals Favia speciosa and Diploastrea heliopora. Marine Ecology Progress Series 271: 167–182.

    Article  Google Scholar 

  • Todd, P. A., R. J. Ladle, R. A. Briers & A. Brunton, 2005. Quantifying two-dimensional dichromatic patterns using a photographic technique: case study on the shore crab (Carcinus maenas, L.). Ecological Research 20(4): 497–502.

    Article  Google Scholar 

  • Todd, P. A., R. A. Briers, R. J. Ladle & F. Middleton, 2006. Phenotype-environment matching in the shore crab (Carcinus maenas). Marine Biology 148: 1357–1367.

    Article  Google Scholar 

  • Trench, R. K., D. S. Wethey & J. W. Porter, 1981. Observations on the symbiosis with zooxanthellae among the Tridacnidae (Mollusca, Bivalvia). Biological Bulletin 161(1): 180–198.

    Article  Google Scholar 

  • Weingarten, R. A., 1991. Tridacna—the giant clam. Freshwater and Marine Aquarium 14(2): 101–106.

    Google Scholar 

  • Wente, W. H. & J. B. Phillips, 2003. Fixed green and brown color morphs and a novel color-changing morph of the Pacific tree frog Hyla regilla. American Naturalist 162: 461–473.

    Article  PubMed  Google Scholar 

  • Wilkens, L. A., 1986. The visual system of the giant clam tridacna: behavioral adaptations. Biological Bulletin 170(3): 393–408.

    Article  Google Scholar 

  • Yasin, Z. & S. H. Tan, 2000. Quantitative and qualitative effects of light on the distribution of giant clams at the Johore Islands in South China Sea. Phuket Marine Biological Center Special Publications 21(1): 113–118.

    Google Scholar 

  • Yonge, C. M., 1975. Giant clams. Scientific American 232: 96–105.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of Marine Biology Laboratory, NUS, who assisted with fieldwork and ideas, and Ow Yan Xiang for help with the figures and formatting. This research is supported by Singapore’s Ministry of Education’s AcRF Tier 1 funding: Grant Number R-154-000-280-112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Todd.

Additional information

Handling editor: I. Nagelkerken

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todd, P.A., Lee, J.H. & Chou, L.M. Polymorphism and crypsis in the boring giant clam (Tridacna crocea): potential strategies against visual predators. Hydrobiologia 635, 37–43 (2009). https://doi.org/10.1007/s10750-009-9859-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9859-9

Keywords

Navigation