Skip to main content
Log in

Effect of nitrogen forms on growth, cell composition and N2 fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aim of this research was to test whether NH4 + and NO3 affect the growth, P demand, cell composition and N2 fixation of Cylindrospermopsis raciborskii under P limitation. Experiments were carried out in P-limited (200 μg l−1 PO4-P) chemostat cultures of C. raciborskii using an inflowing medium containing either 4,000 μg l−1 NH4-N, 4,000 μg l−1 NO3-N or no combined N. The results showed the cellular N:P and C:P ratios of C. raciborskii decreased towards the Redfield ratio with increasing dilution rate (D) due to the alleviation of P limitation. The cellular C:N and carotenoids:chlorophyll-a ratios also decreased with D, predominantly as a result of an increase in the chlorophyll-a and N content. The NH4 + and NO3 supply reduced the P maintenance cell quota of C. raciborskii. Consequently, the biomass yield of the N2-grown culture was significantly lower. The maximum specific growth rate of N2-grown culture was also the lowest observed. It is suggested that these differences in growth parameters were caused by the P and energy requirement for heterocyte formation, nitrogenase synthesis and N2 fixation. N2 fixation was partially inhibited by NO3 and completely inhibited by NH4 +. It was probably repressed through the high N content of cells at high dissolved N concentrations. These results indicate that C. raciborskii is able to grow faster and maintain a higher biomass under P limitation where a sufficient supply of NH4 + or NO3 is maintained. Information gained about the species-specific nutrient and pigment stoichiometry of C. raciborskii could help to access the degree of nutrient limitation in water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ågren, G. I., 2004. The C:N:P stoichiometry of autotrophs—theory and observations. Ecology Letters 7(3): 185–191.

    Article  Google Scholar 

  • Ahn, C.-Y., A.-S. Chung & H.-M. Oh, 2002. Rainfall, phycocyanin, and N:P ratios related to cyanobacterial blooms in a Korean large reservoir. Hydrobiologia 474(1–3): 117–124.

    Article  CAS  Google Scholar 

  • Blomqvist, P., A. Pettersson & P. Hyenstrand, 1994. Ammonium-nitrogen, a key regulatory factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems. Archiv für Hydrobiologie 13: 141–164.

    Google Scholar 

  • Briand, J. F., Ch. Leboulanger, J.-F. Humbert, C. Bernard & P. Dufour, 2004. Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming? Journal of Phycology 40: 231–238.

    Article  Google Scholar 

  • Bryant, D. A., 1994. The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Bulgakov, N. G. & A. P. Levich, 1999. The nitrogen:phosphorus ratio as a factor regulating phytoplankton community structure. Archiv für Hydrobiologie 146: 3–22.

    CAS  Google Scholar 

  • Burford, M. A., K. L. McNeale & F. J. McKenzie-Smith, 2006. The role of nitrogen in promoting the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir. Freshwater Biology 51(11): 2143–2153.

    Article  CAS  Google Scholar 

  • De Nobel, W. T. P., J. L. Snoep, H. V. Westerhoff & L. R. Mur, 1997a. Interaction of nitrogen fixation and phosphorus limitation in Aphanizomenon flos-aquae (Cyanophyceae). Journal of Phycology 33: 794–799.

    Article  Google Scholar 

  • De Nobel, W. T. P., J. Huisman, J. L. Snoep & L. R. Mur, 1997b. Competition for phosphorus between the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. FEMS Microbiology Ecology 24: 259–267.

    Article  Google Scholar 

  • De Nobel, W. T. P., H. C. P. Matthijs, E. Von Elert & L. R. Mur, 1998. Comparison of the light-limited growth of the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. New Phytologist 138: 579–587.

    Article  Google Scholar 

  • Dokulil, T. M. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.

    Article  CAS  Google Scholar 

  • Droop, M. R., 1973. Some thought on nutrient limitation in algae. Journal of Phycology 17: 257–265.

    Google Scholar 

  • Geider, R. J. & J. La Roche, 2002. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology 37: 1–17.

    Article  Google Scholar 

  • Hawkins, P. R., J. Holliday, A. Kathuria & L. Bowling, 2005. Change in cyanobacterial biovolume due to preservation by Lugol’s iodine. Harmful Algae 4(6): 1033–1043.

    Article  CAS  Google Scholar 

  • Healey, F. P., 1978. Physiological indicators of nutrient deficiency in algae. Mitteilungen der Internatinalen Vereinigung für Limnologie 21: 34–41.

    CAS  Google Scholar 

  • Heath, M. R., K. Richardson & T. Kiǿrboe, 1990. Optical assessment of phytoplankton nutrient depletion. Archiv für Hydrobiologie 146: 3–22.

    Google Scholar 

  • Herodek, S., V. Istvánovics, G. Jolánkai, P. Csathó, T. Németh & Gy. Várallyay, 1995. The P cycle in the Balaton catchment—a Hungarian case study. In Thiessen, H. (ed.), Phosphorus in the Global Environment, Scope 54. Willey: 275–300.

  • Hyenstrand, P., P. Blomqvist & A. Pettersson, 1998. Factors determining cyanobacterial success in aquatic ecosystems—a literature review. Archiv für Hydrobiologie Special Issues in Advanced Limnology 51: 41–62.

    Google Scholar 

  • Istvánovics, V., H. M. Shafik, M. Présing & Sz. Juhos, 2000. Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in through flow cultures. Freshwater Biology 43(2): 257–275.

    Article  Google Scholar 

  • Iwamura, T., H. Nagai & S. Ishimura, 1970. Improved methods for determining contents of chlorophyll, protein, ribonucleic and desoxyribonucleic acid in planktonic populations. Internationale Revue der Gesamten Hydrobiologie 55: 131–147.

    Article  CAS  Google Scholar 

  • Kim, H.-S., S.-J. Hwang, J.-K. Shin, K.-G. An & C. G. Yoon, 2007. Effects of limiting nutrients and N:P ratios on the phytoplankton growth in a shallow hypertrophic reservoir. Hydrobiologia 581: 255–267.

    Article  CAS  Google Scholar 

  • Kapustka, L. A. & J. R. Rosowski, 1976. The response of a Cylindrospermum species to different sources of nitrogen. Proceedings of the Oklahoma Academy of Science 56: 49–52.

    CAS  Google Scholar 

  • Klausmeier, C. A., E. Litchman, T. Daufresne & S. A. Levin, 2004. Optimal N:P stoichiometry of phytoplankton. Nature 429: 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Kovács, W. A., 2004. Comparative study of the most important planktonic N2-fixing cyanobacteria (Cylindrospermopsis raciborskii, Aphanizomenon flos-aquae) of Lake Balaton. PhD Thesis, Tihany, Hungary (in Hungarian with English abstract).

  • Kulasooriya, S. A., N. J. Lang & P. Fay, 1972. The heterocysts of blue-green algae. III. Differentiation and nitrogenase activity. Proceedings of the Royal Society of London, Series B, Biological Sciences 181(1063): 199–209.

    CAS  Google Scholar 

  • Layzell, D. B., D. H. Turpin & I. R. Elrifi, 1985. Effect of N source on the steady-state growth and N assimilation of P-limited Anabaena flos-aquae. Plant Physiology 78: 739–745.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D.-Y. & G.-Y. Rhee, 1997. Kinetics of cell in the cyanobacterium Anabaena flos-aquae and the production of dissolved organic carbon. Journal of Phycology 33: 991–998.

    Article  Google Scholar 

  • Liu, H., R. R. Bidigara, E. Laws, M. R. Landry & L. Campbell, 1999. Cell cycle and physiological characteristics of Synechococcus (WH7803) in chemostat culture. Marine Ecology Progress Series 189: 17–25.

    Article  CAS  Google Scholar 

  • Meeks, J. C. & J. Elhai, 2002. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiology and Molecular Biology Reviews 66: 94–121.

    Article  PubMed  CAS  Google Scholar 

  • Meeks, J. C., K. L. Wycoff, J. S. Chapman & C. S. Enderlin, 1983. Regulation of expression of nitrate and dinitrogen assimilation by Anabaena species. Applied and Environmental Microbiology 45(4): 1351–1359.

    PubMed  CAS  Google Scholar 

  • Mulholland, M. R. & P. W. Bernhardt, 2005. The effect of growth rate, phosphorus concentration, and temperature on N2 fixation, carbon fixation, and nitrogen release in continuous cultures of Trichodesmium IMS 101. Limnology and Oceanography 50(3): 839–849.

    CAS  Google Scholar 

  • Nõges, T., A. Järvet, A. Kisand, R. Laugaste, E. Loigu, B. Skakalski & P. Nõges, 2007. Reaction of large and shallow lakes Peipsi and Võrtsjärv to the changes of nutrient loading. Hydrobiologia 584: 253–264.

    Article  CAS  Google Scholar 

  • Oh, H.-M., J. Maeng & G.-Y. Rhee, 1991. Nitrogen and carbon fixation by Anabaena sp. isolated from a rice paddy and grown under P and light limitations. Journal of Applied Phycology 3: 335–343.

    CAS  Google Scholar 

  • Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie 107: 563–593.

    Google Scholar 

  • Padisák, J. & R. C. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.

    Article  Google Scholar 

  • Pomogyi, P., 1993. Nutrient retention of the Kis-Balaton Water Protective System. Hydrobiologia 251: 309–320.

    Article  CAS  Google Scholar 

  • Présing, M., S. Herodek, L. Vörös & I. Kóbor, 1996. Nitrogen fixation, ammonium and nitrate uptake during a bloom of Cylindrospermopsis raciborskii in Lake Balaton. Archiv für Hydrobiologie 136: 553–562.

    Google Scholar 

  • Présing, M., S. Herodek, T. Preston & L. Vörös, 2001. Nitrogen uptake and the importance of internal nitrogen loading in Lake Balaton. Freshwater Biology 46: 125–139.

    Article  Google Scholar 

  • Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Excellence in Ecology 9. Ecology Institute, Oldendorf/Luhe.

  • Rhee, G.-Y. & T. C. Lederman, 1983. Effects of nitrogen sources on P-limited growth of Anabaena flos-aquae. Journal of Phycology 19: 179–185.

    Article  CAS  Google Scholar 

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Article  PubMed  CAS  Google Scholar 

  • Schlüter, L., B. Riemann & M. Sandergaard, 1997. Nutrient limitation in relation to phytoplankton carotenoid/chlorophyll a ratios in freshwater mesocosms. Journal of Plankton Research 19: 891–906.

    Article  Google Scholar 

  • Sciandra, A., J. Gostan, Y. Collos, C. Descolas-Gros, C. Leboulanger, V. Martin-Jézéquel, M. Denis, D. Lefèvre, C. Copin & B. Avril, 1997. Growth-compensating phenomena in continuous cultures of Dunaliella tertiolecta limited simultaneously by light and nitrate. Limnology and Oceanography 46(2): 1325–1339.

    Article  Google Scholar 

  • Shafik, H. M., S. Herodek, M. Présing & L. Vörös, 2001. Factors effecting growth and cell composition of cyanoprokaryote C. raciborskii (Wołoszyńska) Seenayya et Subba Raju. Archiv für Hydrobiologie Supplement 140 (Algological Studies 103): 75–93.

  • Shafik, H. M., L. Vörös, P. Sprőber, M. Présing & A. W. Kovács, 2003. Some special morphological features of Cylindrospermopsis raciborskii in batch and continuous cultures. Hydrobiologia 506–509: 163–167.

    Article  Google Scholar 

  • Smith, V. H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671.

    Article  PubMed  CAS  Google Scholar 

  • Sprőber, P., H. M. Shafik, M. Présing, A. W. Kovács & S. Herodek, 2003. Nitrogen uptake and fixation in the cyanobacterium Cylindrospermopsis raciborskii under different nitrogen conditions. Hydrobiologia 506–509(1–3): 169–174.

    Article  Google Scholar 

  • Stüken, A., J. Rücker, T. Endrulat, K. Preussel, M. Hemm, B. Nixdorf, U. Karsten & C. Wiedner, 2006. Distribution of three alien cyanobacterial species (Nostocales) in northeast Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides. Phycologia 45(6): 696–703.

    Article  Google Scholar 

  • Thompson, P. A., M. E. Levaseur & P. J. Harrison, 1989. Light-limited growth on ammonium vs. nitrate: what is the advantage for marine phytoplankton? Limnology and Oceanography 34: 1014–1024.

    Article  CAS  Google Scholar 

  • Turpin, D. H., D. B. Layzell & I. R. Elrifi, 1985. Modeling and the C economy of Anabaena flos-aquae. Plant Physiology 78: 746–752.

    Article  PubMed  CAS  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplanktonmethodik. Mitteilungen der Internationalen Vereinigung für Limnologie 9: 1–38.

    Google Scholar 

  • Vargas, M. A., H. Rodriguez, J. Moreno, H. Olivares, J. A. Del Campo, J. Rivas & M. G. Guerrero, 1998. Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteria. Journal of Phycology 34: 812–817.

    Article  CAS  Google Scholar 

  • Ward, A. K. & R. G. Wetzel, 1980. Interactions of light and nitrogen source among planktonic blue-green algae. Archiv für Hydrobiologie 90: 1–25.

    CAS  Google Scholar 

  • Watson, R. A. & P. L. Osborne, 1979. An algal pigment ratio as an indicator of the nitrogen supply to phytoplankton in three Norfolk broads. Freshwater Biology 9: 585–594.

    Article  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses, 2nd ed. Springer, New York.

    Google Scholar 

  • Yakunin, A. F., O. Yu. Troshina & I. N. Gogotov, 1995. Relationship between nitrogenase synthesis and C/N ratio in the nitrogen-fixing cyanobacterium Anabaena variabilis. Microbiology 64(1): 10–12.

    CAS  Google Scholar 

  • Yoch, D. C. & J. W. Gotto, 1982. Effect of light intensity and inhibitors of nitrogen assimilation on NH4 + inhibition of nitrogenase activity in Rhodospirillum rubrum and Anabaena sp. Journal of Bacteriology 151(2): 800–806.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by a grant from the Balaton Project of the Office of the Prime Minister of Hungary (MEH) and from the Hungarian Program for Research and Development (NKFP) under contract 3B/022/2004 (BALÖKO). The authors also wish to acknowledge and thank Terézia Horváth, Erika Kozma for their assistance. We wish to thank Peter Hunter for correcting the manuscript and Lajos Vörös for his help with the microscopic techniques.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gyöngyi Kenesi or Mátyás Présing.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenesi, G., Shafik, H.M., Kovács, A.W. et al. Effect of nitrogen forms on growth, cell composition and N2 fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures. Hydrobiologia 623, 191–202 (2009). https://doi.org/10.1007/s10750-008-9657-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9657-9

Keywords

Navigation