Skip to main content
Log in

Global diversity of amphibians (Amphibia) in freshwater

  • Freshwater Animal Diversity Assessment
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This article present a review of species numbers, biogeographic patterns and evolutionary trends of amphibians in freshwater. Although most amphibians live in freshwater in at least their larval phase, many species have evolved different degrees of independence from water including direct terrestrial development and viviparity. Of a total of 5,828 amphibian species considered here, 4,117 are aquatic in that they live in the water during at least one life-history stage, and a further 177 species are water-dependent. These numbers are tentative and provide a conservative estimate, because (1) the biology of many species is unknown, (2) more direct-developing species e.g. in the Brachycephalidae, probably depend directly on moisture near water bodies and (3) the accelerating rate of species discoveries and descriptions in amphibians indicates the existence of many more, yet undescribed species, most of which are likely to have aquatic larvae. Regional endemism in amphibians is very high, with only six out of 348 aquatic genera occurring in more than one of the major biogeographic divisions used herein. Global declines threatening amphibians are known to be triggered by an emerging infectious fungal disease and possibly by climate change, emphasizing the need of concerted conservation efforts, and of more research, focused on both their terrestrial and aquatic stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altig, R. & R. W. McDiarmid, 1999. Body plan: development and morphology. In McDiarmid, R. W. & R. Altig (eds), Tadpole: The Biology of Anuran Larvae. University of Chicago Press, Chicago: 24–51.

    Google Scholar 

  • AmphibiaWeb, 2005. Information on Amphibian Biology and Conservation. [web application]. Berkeley, California. AmphibiaWeb. Available: http://amphibiaweb.org/. (Accessed, 2005).

  • Avise, J. C., 2000. Phylogeography. The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Balinsky, J. B., 1981. Adaptation of nitrogen metabolism to hyperosmotic environment in Amphibia. Journal of Experimental Zoology 215: 335–350.

    Article  CAS  Google Scholar 

  • Biju, S. D. & F. Bossuyt, 2003. New frog family from India reveals an ancient biogeographical link with the Seychelles. Nature 425: 711–714.

    Article  PubMed  CAS  Google Scholar 

  • Blaustein, A. R., D. B. Wake & W. P. Sousa, 1994. Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conservation Biology 8: 60–71.

    Article  Google Scholar 

  • Chippindale, P. T., A. S. Baldwin, R. M. Bonett & J. J. Wiens, 2004. Phylogenetic evidence for a major reversal of life history evolution in plethodontid salamanders. Evolution 58: 2809–2822.

    PubMed  CAS  Google Scholar 

  • Daszak, P., A. A. Cunningham & A. D. Hyatt, 2003. Infectious disease and amphibian population declines. Diversity and Distributions 9: 141–150.

    Article  Google Scholar 

  • Dubois, A., 2004. The higher nomenclature of recent amphibians. Alytes 22: 1–14.

    Google Scholar 

  • Dubois, A., 2005. Developmental pathway, speciation and supraspecific taxonomy in amphibians 1. Why are there so many frog species in Sri Lanka. Alytes 22: 19–37.

    Google Scholar 

  • Duellman, W. E., 1993. Amphibian Species of the World: Additions and Corrections, Vol. 21. University of Kansas, Museum of Natural History, Special Publication, pp. 1–372.

  • Duellman, W. E. & D. M. Hillis, 1987. Marsupial frogs (Anura: Hylidae: Gastrotheca) of the Ecuadorian Andes: resolution of taxonomic problems and phylogenetic relationships. Herpetologica 43: 141–173.

    Google Scholar 

  • Duellman, W. E. & L. Trueb, 1986. Biology of Amphibians. McGraw-Hill, New York.

    Google Scholar 

  • Faivovich, J., C. F. B. Haddad, P. C. A. Garcia, D. R. Frost, J. A. Campbell & W. C. Wheeler, 2005. Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bulletin of the American Museum of Natural History 294: 1–240.

    Article  Google Scholar 

  • Feller, A. E. & S. B. Hedges, 1998. Molecular evidence for the early history of living amphibians. Molecular Phylogenetics and Evolution 9: 509–516.

    Article  PubMed  CAS  Google Scholar 

  • Frost, D. R. (ed.), 1985. Amphibian Species of the World. Association of Systematic Collections, Allen Press, Lawrence, Kansas.

  • Frost, D. R., 2004. Amphibian Species of the World: an Online Reference. Version 3.0 (22 August, 2004). Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.

  • Frost, D. R., T. Grant, J. Faivovich, R. H. Bain, A. Haas, C. F. B. Hadad, R. De Sa, A. Channing, M. Wilkinson, S. C. Donnellan, C. J. Raxworthy, J. A. Campbell, B. L. Blotto, P. Moler, R. C. Drewes, R.A. Nussbaum, J. D. Lynch, D. M. Green & W. C. Wheeler, 2006. The amphibia tree of life. Bulletin of the American Museum of Natural History 297: 1–370.

    Article  Google Scholar 

  • Glaw, F. & J. Köhler, 1998. Amphibian species diversity exceeds that of mammals. Herpetological Review 29: 11–12.

    Google Scholar 

  • Glaw, F. & M. Vences, 2006. Phylogeny and genus-level classification of mantellid frogs (Amphibia, Anura). Organisms Diversity & Evolution 6: 236–253.

    Article  Google Scholar 

  • Hanken, J., 1999. Why are there so many new amphibian species when amphibians are declining? Trends in Ecology and Evolution 14: 7–8.

    Article  PubMed  Google Scholar 

  • Hedges, S. B., C. A. Hass & L. R. Maxson, 1992. Caribbean biogeography: molecular evidence for dispersal in west Indian terrestrial vertebrates. Proceedings of the National Academy of Sciences of the USA. 89: 1909–1913.

    Google Scholar 

  • Himstedt, W., 1996. Die Blindwühlen. Neue Brehm-Bücherei, Vol. 630.

  • Hoegg, S, M. Vences, H. Brinkmann & A. Meyer, 2004. Phylogeny and comparative substitution rates of frogs inferred from sequences of three nuclear genes. Molecular Biology and Evolution 21: 1188–1200.

    Article  PubMed  CAS  Google Scholar 

  • Kosuch, J., M. Vences, A. Dubois, A. Ohler & W. Böhme, 2001. Out of Asia: mitochondrial DNA evidence for an oriental origin of tiger frogs, genus Hoplobatrachus. Molecular Phylogenetics and Evolution 21: 398–407.

    Article  PubMed  CAS  Google Scholar 

  • Köhler, J., D. R. Vietes, R. M. Bonett, F. Hita Garcia, F. Glaw, D. Steinke & M. Vences, 2005. New amphibians and global conservation: a boost in species discoveries in a highly endangered vertebrate group. BioScience 55: 693–696.

    Article  Google Scholar 

  • Measey, G. J., M. Vences, R. C. Drewes, Y. Chiari, M. Melo & B. Bourles, 2007. Freshwater paths into the ocean: molecular phylogeny of the frog Ptychadena newtoni gives insights into amphibian colonization of oceanic islands. Journal of Biogeography 34: 7–20.

    Article  Google Scholar 

  • Meyer, A. & R. Zardoya, 2003. Recent advances in the (molecular) phylogeny of vertebrates. Annual Reviews of Ecology, Evolution and Systematics 34: 311–338.

    Article  Google Scholar 

  • Min, M. S., S. Y. Yang, R. M. Bonett, D. R. Vieites, R. A. Brandon & D. B. Wake, 2005. Discovery of the first Asian plethodontid salamander. Nature 435: 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Moodie, G. E. E., 1978. Observations on the life history of the caecilian Typhlonectes compressicaudus (Duméril & Bibron) in the Amazon basin. Canadian Journal of Zoology 56: 1005–1008.

    Article  Google Scholar 

  • Pounds, J. A., M. R. Bustamante, L. A. Coloma, J. A. Consuegra, M. P. L. Fogden, P. N. Foster, E. LaMarca, K. L. Masters, A. Merino-Viteri, R. Puschendorf, S. R. Ron, G. A. Sánchez-Azofeifa, C. J. Still & B. E. Young, 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439: 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Ranvestel, A. W., K. R. Lips, C. M. Pringle, M. R. Whiles & R. J. Bixby, 2004. Neotropical tadpoles influence stream benthos: evidence for the ecological consequences of decline in amphibian populations. Freshwater Biology 49: 274–285.

    Article  Google Scholar 

  • Roelants, K. & F. Bossuyt, 2005. Archaeobatrachian paraphyly and Pangaean diversification of crown-group frogs. Systematic Biology 54: 111–126.

    Article  PubMed  Google Scholar 

  • San Mauro, D., M. Vences, M. Alcobendas, R. Zardoya & A. Meyer, 2005. Initial diversification of living amphibians predated the breakup of Pangaea. The American Naturalist 165: 590–599.

    Article  PubMed  Google Scholar 

  • Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. L. Rodriguez, D. L. Fishman & R. W. Waller, 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783–1786.

    Article  PubMed  CAS  Google Scholar 

  • Vences, M. & F. Glaw, 2001. Systematic review and molecular phylogenetic relationships of the direct developing Malagasy anurans of the Mantidactylus asper group (Amphibia, Mantellidae). Alytes 19: 107–139.

    Google Scholar 

  • Vences, M., J. Kosuch, M. -O. Rödel, S. Lötters, A. Channing, F. Glaw & W. Böhme, 2004. Phylogeography of Ptychadena mascareniensis suggests transoceanic dispersal in a widespread African-Malagasy frog lineage. Journal of Biogeography 31: 593–601.

    Google Scholar 

  • Vences, M., M. Thomas, A. van der Meijden, Y. Chiari & D. R. Vieites, 2005a. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology 2: article 5.

  • Vences, M., M. Thomas, R. M. Bonett & D. R. Vieites, 2005b. Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philosophical Transactions of the Royal Society London Series B 360: 1859–1868.

    Article  CAS  Google Scholar 

  • Vences M., D. R. Vieites, F. Glaw, H. Brinkmann, J. Kosuch, M. Veith & A. Meyer, 2003. Multiple overseas dispersal in amphibians. Proceedings of the Royal Society of London Series B 270: 2435–2442.

    Google Scholar 

  • Wake, M. H., 1977. The reproductive biology of caecilians: an evolutionary perspective. In Taylor, D. H. & S. I. Guttman (eds), Reproductive Biology of Amphibians. Plemum Press, New York: 73–101.

    Google Scholar 

  • Wake, M. H., 1989. Phylogenesis of direct development and viviparity in vertebrates. In Wake, D. B. & G. Roth (eds), Complex Organismal Functions: Integration and Evolution in Vertebrates. John Wiley & Sons Ltd.: 235–250.

  • Weldon, C., L. H. du Preez, A. D. Hyatt, R. Muller & R. Speare, 2004. The origin of the amphibian chytrid fungus. Emerging Infectious Diseases 10: 2100–2105.

    PubMed  Google Scholar 

  • Wilson, A. C., L. R. Maxson & V. M. Sarich, 1974. Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proceedings of the National Academy of Sciences of the USA 71: 2843–2847.

Download references

Acknowledgements

We are grateful to Francisco Hita García for his help with updating our amphibian species database, and to Frank Glaw for numerous discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Vences.

Additional information

Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens

Freshwater Animal Diversity Assessment

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vences, M., Köhler, J. Global diversity of amphibians (Amphibia) in freshwater. Hydrobiologia 595, 569–580 (2008). https://doi.org/10.1007/s10750-007-9032-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-9032-2

Keywords

Navigation