Skip to main content

Advertisement

Log in

Redefining biomarkers in heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure (HF) is the end result of many different cardiac and non-cardiac abnormalities leading to a complex clinical entity. In this view, the use of biomarkers in HF should be deeply reconsidered; indeed, the same biomarker may carry a different significance in patients with preserved or reduced EF. The aim of this review is to reconsider the role of biomarkers in HF, based on the different clinical characteristics of this syndrome. The role of cardiac and non-cardiac biomarkers will be reviewed with respect of the different clinical manifestations of this syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ramachandran SV (2006) Biomarkers of cardiovascular disease molecular basis and practical considerations. Circulation 113:2335–2362

    Article  Google Scholar 

  2. Fox N, Growdon JH (2004) Biomarkers and surrogates. NeuroRx 1(2):181

    Article  PubMed Central  Google Scholar 

  3. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  4. D’Elia E, Vaduganathan M, Gori M, Gavazzi A, Butler J, Senni M (2015) Role of biomarkers in cardiac structure phenotyping in heart failure with preserved ejection fraction: critical appraisal and practical use. Eur J Heart Fail 17:1231–1239

    Article  PubMed  Google Scholar 

  5. Francis GS, Goldsmith SR, Levine TB et al (1984) The neurohumoral axis in congestive heart failure. Ann Intern Med 101(3):370–377

    Article  CAS  PubMed  Google Scholar 

  6. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS) (1987) The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med 316(23):1429–1435

    Article  Google Scholar 

  7. Ikram H, Fitzpatrick D (1981) Double-blind trial of chronic oral beta blockade in congestive cardiomyopathy. Lancet 2(8245):490–493

    Article  CAS  PubMed  Google Scholar 

  8. Waagstein F, Bristow MR, Swedberg K et al (1993) Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Lancet 342(8885):1441–1446

    Article  CAS  PubMed  Google Scholar 

  9. Santhanakrishnan R, Chong JP, Ng TP, Ling LH, Sim D, Leong KT, Yeo PS, Ong HY, Jaufeerally F, Wong R, Chai P, Low AF, Richards AM, Lam CS (2012) Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail 14:1338–1347

    Article  CAS  PubMed  Google Scholar 

  10. Sinning C, Kempf T, Schwarzl M, Lanfermann S, Ojeda F, Schnabel RB, Zengin E, Wild PS, Lackner KJ, Munzel T, Blankenberg S, Wollert KC, Zeller T, Westermann D (2017) Biomarkers for characterization of heart failure—distinction of heart failure with preserved and reduced ejection fraction. Int J Cardiol 227:272–277

    Article  PubMed  Google Scholar 

  11. Maisel A, Mueller C, Nowak R, Peacock WF, Landsberg JW, Ponikowski P et al (2010) Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol 55:2062–2076

    Article  CAS  PubMed  Google Scholar 

  12. Klip IT, Voors AA, Anker SD, Hillege HL, Struck J, Squire I et al (2011) Prognostic value of mid-regional pro-adrenomedullin in patients with heart failure after an acute myocardial infarction. Heart 97:892–898

    Article  CAS  PubMed  Google Scholar 

  13. Peacock WF, Nowak R, Christenson R, DiSomma S, Neath SX, Hartmann O, Mueller C, Ponikowski P, Möckel M, Hogan C, Wu AH, Richards M, Filippatos GS, Anand I, Ng LL, Daniels LB, Morgenthaler N, Anker SD, Maisel AS (2011) Short-term mortality risk in emergency department acute heart failure. Acad Emerg Med 18:947–958

    Article  PubMed  Google Scholar 

  14. Morbach C, Marx A, Kaspar M, Güder G, Brenner S, Feldmann C, Störk S, Vollert JO, Ertl G, Angermann CE, INH Study Group and the Competence Network Heart Failure (2017) Prognostic potential of midregional pro-adrenomedullin following decompensation for systolic heart failure: comparison with cardiac natriuretic peptides. Eur J Heart Fail 19:1166–1175

    Article  CAS  PubMed  Google Scholar 

  15. Rademaker MT, Charles CJ, Espiner EA, Frampton CM, Lainchbury JG, Richards AM (2005) Four-day urocortin-I administration has sustained beneficial haemodynamic, hormonal, and renal effects in experimental heart failure. Eur Heart J 26:2055–2062

    Article  CAS  PubMed  Google Scholar 

  16. Wright SP, Doughty RN, Frampton CM, Gamble GD, Yandle TG, Richards AM (2009) Plasma urocortin 1 in human heart failure. Circ Heart Fail 2:465–471

    Article  CAS  PubMed  Google Scholar 

  17. Ng LL, Loke IW, O’Brien RJ, Squire IB, Davies JE (2004) Plasma urocortin in human systolic heart failure. Clin Sci 106:383–388

    Article  CAS  PubMed  Google Scholar 

  18. Yıldırım E, Cengiz M, Yıldırım N, Aslan K, İpek E, Korkmaz AF, Ulusoy FR, Hatem E (2014) The evaluation of the clinical utility of urocortin 1 and adrenomedullin versus proBNP in systolic heart failure. Anatol J Cardiol 17(3):184–190

    PubMed  Google Scholar 

  19. Tang WH, Shrestha K, Martin MG, Borowski AG, Jasper S, Yandle TG (2010) Clinical significance of endogenous vasoactive neurohormones in chronic systolic heart failure. J Card Fail 16:635–640

    Article  CAS  PubMed  Google Scholar 

  20. Chatterjee K (2005) Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol 95:8B–13B

    Article  CAS  PubMed  Google Scholar 

  21. Mohammed AA, van Kimmenade RR, Richards M, Bayes-Genis A, Pinto Y, Moore SA (2010) Hyponatremia, natriuretic peptides, and outcomes in acutely decompensated heart failure: results from the International Collaborative of NT-proBNP Study. Circ Heart Fail 3:354–361

    Article  CAS  PubMed  Google Scholar 

  22. Balling L, Gustafsson F (2016) Copeptin in heart failure. Adv Clin Chem 73:29–64

    Article  PubMed  Google Scholar 

  23. Tentzeris I, Jarai R, Farhan S, Perkmann T, Schwarz MA, Jak LG (2011) Complementary role of copeptin and high-sensitivity troponin in predicting outcome in patients with stable chronic heart failure. Eur J Heart Fail 13:726–733

    Article  CAS  PubMed  Google Scholar 

  24. Alehagen U, Dahlström U, Rehfeld JF, Goetze JP (2011) Association of copeptin and N-terminal proBNP concentrations with risk of cardiovascular death in older patients with symptoms of heart failure. JAMA 305(20):2088–2095

    Article  CAS  PubMed  Google Scholar 

  25. Jackson CE, Haig C, Welsh P, Dalzell JR, Tsorlalis IK, McConnachie A, Preiss D, Anker SD, Sattar N, Petrie MC, Gardner RS, McMurray JJ (2016) The incremental prognostic and clinical value of multiple novel biomarkers in heart failure. Eur J Heart Fail 18(12):1491–1498

    Article  CAS  PubMed  Google Scholar 

  26. Kumar SK, Mather PJ (2009) AVP receptor antagonists in patients with CHF. Heart Fail Rev 14(2):83–86

    Article  CAS  PubMed  Google Scholar 

  27. Cabassi A, Binno SM, Tedeschi S, Graiani G, Galizia C, Bianconcini M, Coghi P, Fellini F, Ruffini L, Govoni P, Piepoli M, Perlini S, Regolisti G, Fiaccadori E (2015) Myeloperoxidase-related chlorination activity is positively associated with circulating ceruloplasmin in chronic heart failure patients: relationship with neurohormonal, inflammatory, and nutritional parameters. Biomed Res Int 2015:691693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tang WH, Katz R, Brennan ML, Aviles RJ, Tracy RP, Psaty BM, Hazen SL (2009) Usefulness of myeloperoxidase levels in healthy elderly subjects to predict risk of developing heart failure. Am J Cardiol 103(9):1269–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reichlin T, Socrates T, Egli P, Potocki M, Breidthardt T, Arenja N (2010) Use of myeloperoxidase for risk stratification in acute heart failure. Clin Chem 56:944–951

    Article  CAS  PubMed  Google Scholar 

  30. Adam M, Meyer S, Knors H, Klinke A, Radunski UK, Rudolph TK, Rudolph V, Spin JM, Tsao PS, Costard-Jäckle A, Baldus S (2015) Levosimendan displays anti-inflammatory effects and decreases MPO bioavailability in patients with severe heart failure. Sci Rep 5:9704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Avellino A, Collins SP, Fermann GJ (2011) Risk stratification and short-term prognosis in acute heart failure syndromes: a review of novel biomarkers. Biomarkers 16:379–392

    Article  CAS  PubMed  Google Scholar 

  32. Kim HN, Januzzi JL Jr (2010) Biomarkers in the management of heart failure. Curr Treat Options Cardiovasc Med 12:519–513

    Article  PubMed  Google Scholar 

  33. Kim HN, Januzzi JL Jr (2011) Natriuretic peptide testing in heart failure. Circulation 123:2015–2019

    Article  PubMed  Google Scholar 

  34. Berger R, Moertl D, Peter S, Ahmadi R, Huelsmann M, Yamuti S (2010) N-terminal pro-B-type natriureticpeptide-guided, intensive patient management in addition to multidisciplinary care in chronic heart failure a 3-arm, prospective, randomized pilot study. J Am Coll Cardiol 55:645–653

    Article  CAS  PubMed  Google Scholar 

  35. Darche FF, Baumgärtner C, Biener M, Müller-Hennessen M, Vafaie M, Koch V, Stoyanov K, Rivinius R, Katus HA, Giannitsis E (2017) Comparative accuracy of NT-proBNP and MR-proANP for the diagnosis of acute heart failure in dyspnoeic patients. ESC Heart Failure 4:232–240

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xue Y, Clopton P, Peacock WF, Maisel AS (2011) Serial changes in high-sensitive troponin I predict outcome in patients with decompensated heart failure. Eur J Heart Fail 13:37–42

    Article  CAS  PubMed  Google Scholar 

  37. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, CANTOS Trial Group (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131

    Article  CAS  PubMed  Google Scholar 

  38. Moe GW, Marin-Garcia J, Konig A, Goldenthal M, Lu X, Feng Q (2004) In vivo TNF-alpha inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. Am J Physiol Heart Circ Physiol 287:H1813–H1820

    Article  CAS  PubMed  Google Scholar 

  39. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL (2001) Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone Trial (VEST). Circulation 103:2055–2059

    Article  CAS  PubMed  Google Scholar 

  40. Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109:1594–1602

    Article  CAS  PubMed  Google Scholar 

  41. Duran S, Duran I, Kaptanagası FA, Nartop F, Ciftci H, Korkmaz GG (2013) The role of pentraxin 3 as diagnostic value in classification of patients with heart failure. Clin Biochem 46(12):983–987

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki S, Takeishi Y, Niizeki T, Koyama Y, Kitahara T, Sasaki T (2008) Pentraxin 3, a new marker for vascular inflammation, predicts adverse clinical outcomes in patients with heart failure. Am Heart J 155:75–81

    Article  CAS  PubMed  Google Scholar 

  43. Weinberg EO, Shimpo M, Hurwitz S, Tominaga S, Rouleau JL, Lee RT (2003) Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation 107:721–726

    Article  PubMed  Google Scholar 

  44. Januzzi JL Jr, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, O'Donoghue M, Sakhuja R, Chen AA, van Kimmenade RR, Lewandrowski KB, Lloyd-Jones DM, Wu AH (2007) Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol 50(7):607–613

    Article  CAS  PubMed  Google Scholar 

  45. Lupón J, Gaggin HK, de Antonio M, Domingo M, Galán A, Zamora E, Vila J, Peñafiel J, Urrutia A, Ferrer E, Vallejo N, Januzzi JL, Bayes-Genis A (2015) Biomarker-assist score for reverse remodeling prediction in heart failure: the ST2-R2 score. Int J Cardiol 184:337–343

    Article  PubMed  Google Scholar 

  46. Pascual-Figal DA, Manzano-Fernandez S, Boronat M (2011) Soluble ST2, high sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. Eur J Heart Fail 13:718–725

    Article  CAS  PubMed  Google Scholar 

  47. Schindler EI, Szymanski JJ, Hock KG, Geltman EM, Scott MG (2016) Short- and long-term biologic variability of galectin-3 and other cardiac biomarkers in patients with stable heart failure and healthy adults. Clin Chem 62(2):360–366

    Article  CAS  PubMed  Google Scholar 

  48. Wilcox JE, Fonarow GC, Ardehali H, Bonow RO, Butler J, Sauer AJ, Epstein SE, Khan SS, Kim RJ, Sabbah HN, Díez J, Gheorghiade M (2015) “Targeting the heart” in heart failure: myocardial recovery in heart failure with reduced ejection fraction. JACC Heart Fail 3(9):661–669

    Article  PubMed  Google Scholar 

  49. Lok DJ, Van Der Meer P, de la Porte PW, Lipsic E, Van Wijngaarden J, Hillege HL (2010) Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol 99:323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Salio M, Chimenti S, De Angelis N, Molla F, Maina V, Nebuloni M (2008) Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction. Circulation 117:1055–1064

    Article  CAS  PubMed  Google Scholar 

  51. Tang WH, Shrestha K, Shao Z (2011) Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol 108:385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gopal DM, Kommineni M, Ayalon N (2012) Relationship of plasma galectin-3 to renal function in patients with heart failure: effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc 1:e000760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Meijers WC, van der Velde AR, Ruifrok WP, Schroten NF, Dokter MM, Damman K, Assa S, Franssen CF, Gansevoort RT, van Gilst WH, Silljé HH, de Boer RA (2014) Renal handling of galectin-3 in the general population, chronic heart failure, and hemodialysis. J Am Heart Assoc 3(5):e000962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Felker GM, Fiuzat M, Shaw LK (2012) Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail 5:72–78

    Article  CAS  PubMed  Google Scholar 

  55. Lax A, Sanchez-Mas J, Asensio-Lopez MC (2015) Mineralocorticoid receptor antagonists modulate galectin-3 and interleukin-33/ST2 signaling in left ventricular systolic dysfunction after acute myocardial infarction. JACC Heart Fail 3:50–58

    Article  PubMed  Google Scholar 

  56. Calvier L, Martinez-Martinez E, Miana M (2015) The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries. JACC Heart Fail 3:59–67

    Article  PubMed  Google Scholar 

  57. George M, Jena A, Srivatsan V, Muthukumar R, Dhandapani VE (2016) GDF 15—a novel biomarker in the offing for heart failure. Curr Cardiol Rev 12(1):37–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Andersson C, Enserro D, Sullivan L, Wang TJ, Januzzi JL Jr, Benjamin EJ, Vita JA, Hamburg NM, Larson MG, Mitchell GF, Vasan RS (2016) Relations of circulating GDF-15, soluble ST2, and troponin I concentrations with vascular function in the community: the Framingham Heart Study. Atherosclerosis 248:245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cotter G, Voors AA, Prescott MF, Felker GM, Filippatos G, Greenberg BH, Pang PS, Ponikowski P, Milo O, Hua TA, Qian M, Severin TM, Teerlink JR, Metra M, Davison BA (2015) Growth differentiation factor 15 (GDF-15) in patients admitted for acute heart failure: results from the RELAX-AHF study. Eur J Heart Fail 17(11):1133–1143

    Article  CAS  PubMed  Google Scholar 

  60. Scrutinio D, Agostoni P, Gesualdo L, Corrà U, Mezzani A, Piepoli M, Di Lenarda A, Iorio A, Passino C, Magrì D, Masarone D, Battaia E, Girola D, Re F, Cattadori G, Parati G, Sinagra G, Villani GQ, Limongelli G, Pacileo G, Guazzi M, Metra M, Frigerio M, Cicoira M, Minà C, Malfatto G, Caravita S, Bussotti M, Salvioni E, Veglia F, Correale M, Scardovi AB, Emdin M, Giannuzzi P, Gargiulo P, Giovannardi M, Perrone-Filardi P, Raimondo R, Ricci R, Paolillo S, Farina S, Belardinelli R, Passantino A, La Gioia R, Metabolic Exercise Test Data Combined with Cardiac and Kidney Indexes (MECKI) Score Research Group (2015) Renal function and peak exercise oxygen consumption in chronic heart failure with reduced left ventricular ejection fraction. Circ J. 79(3):583–591

    Article  PubMed  Google Scholar 

  61. Peacock WF 4th, De Marco T, Fonarow GC (2008) Cardiac troponin and outcome in acute heart failure. N Engl J Med 358:2117–2126

    Article  CAS  PubMed  Google Scholar 

  62. Felker GM, Hasselblad V, Tang WH (2012) Eur J Heart Fail 14:1257–1264

    Article  CAS  PubMed  Google Scholar 

  63. Pang PS, Teerlink JR, Voors AA, Ponikowski P, Greenberg BH, Filippatos G, Felker GM, Davison BA, Cotter G, Kriger J, Prescott MF, Hua TA, Severin T, Metra M (2016) Use of high sensitivity troponin t to identify patients with acute heart failure at lower risk for adverse outcomes: an exploratory analysis from the RELAX-AHF Trial. JACC Heart Fail 4(7):591–599

    Article  PubMed  Google Scholar 

  64. Grodin JL, Neale S, Wu Y, Hazen SL, Tang WH (2015) Prognostic comparison of different sensitivity cardiac troponin assays in stable heart failure. Am J Med 128:276–282

    Article  PubMed  Google Scholar 

  65. Cardinale D, Sandri MT, Colombo A (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109:2749–2754

    Article  CAS  PubMed  Google Scholar 

  66. Ky B, Putt M, Sawaya H (2014) Early increases in multiple biomarkers predict subsequent cardiotoxicity in breast cancer patients treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol 63:809–816

    Article  CAS  PubMed  Google Scholar 

  67. Zile MR, Desantis SM, Baicu CF, Stroud RE, Thompson SB, McClure CD (2011) Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circ Heart Fail 4:246–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ho CY, Lopez B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P (2010) Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 363:552–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Buralli S, Dini FL, Ballo P, Conti U, Fontanive P, Duranti E (2010) Circulating matrix metalloproteinase-3 and metalloproteinase-9 and tissue Doppler measures of diastolic dysfunction to risk stratify patients with systolic heart failure. Am J Cardiol 105:853–856

    Article  CAS  PubMed  Google Scholar 

  70. Sanchis L, Andrea R, Falces C, Llopis J, Morales-Ruiz M, López-Sobrino T, Pérez-Villa F, Sitges M, Sabate M, Brugada J (2015) Prognosis of new-onset heart failure outpatients and collagen biomarkers. Eur J Clin Investig 45(8):842–849

    Article  CAS  Google Scholar 

  71. Van Kimmenade RR, Januzzi JL Jr, Ellinor PT, Sharma UC, Bakker JA, Low AF et al (2006) Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol 48:1217–1224

    Article  PubMed  CAS  Google Scholar 

  72. Grubb AO (2000) Cystatin C—properties and use as diagnostic marker. Adv Clin Chem 35:63–99

    Article  CAS  PubMed  Google Scholar 

  73. Flores-Blanco PJ, Manzano-Fernández S, Pérez-Calvo JI, Pastor-Pérez FJ, Ruiz-Ruiz FJ, Carrasco-Sánchez FJ, Morales-Rull JL, Pascual-Figal D, Galisteo-Almeda L, Januzzi JL (2015) Cystatin C-based CKD-EPI equations and N-terminal pro-B-type natriuretic peptide for predicting outcomes in acutely decompensated heart failure. Clin Cardiol 38(2):106–113

    Article  PubMed  Google Scholar 

  74. Sarnak MJ, Katz R, Stehman-Breen CO, Fried LF, Jenny NS, Psaty BM, Cystatin C (2005) concentration as a risk factor for heart failure in older adults. Ann Intern Med 142:497–505

    Article  CAS  PubMed  Google Scholar 

  75. Manzano-Fernandez S, Januzzi JL Jr, Boronat Garcia M, Bonaque-Gonzalez JC, Truong QA, Pastor-Perez FJ (2011) Beta-trace protein and cystatin C as predictors of long-term outcomes in patients with acute heart failure. J Am Coll Cardiol 57:849–858

    Article  CAS  PubMed  Google Scholar 

  76. Yndestad A, Landro L, Ueland T, Dahl CP, Flo TH, Vinge LE (2009) Increased systemic and myocardial expression of neutrophil gelatin aseassociated lipocalin in clinical and experimental heart failure. Eur Heart J 30:1229–1236

    Article  CAS  PubMed  Google Scholar 

  77. Shrestha K, Borowski AG, Troughton RW, Thomas JD, Klein AL, Tang WH (2011) Renal dysfunction is a stronger determinant of systemic neutrophil gelatinase-associated lipocalin levels than myocardial dysfunction in systolic heart failure. J Card Fail 17:472–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ventoulis I, Mantziari L, Mouratoglou SA, Kamperidis V, Giannakoulas G, Ziakas A, Tsalikakis D, Giamouzis G, Hitoglou-Makedou A, Karvounis H (2015) NGAL and ST2 levels in ambulatory patients with chronic heart failure. Clinical and echocardiographic correlates. Scand Cardiovasc J 49(4):213–219

    Article  CAS  PubMed  Google Scholar 

  79. Damman K, Van Veldhuisen DJ, Navis G, Vaidya VS, Smilde TD, Westenbrink BD (2010) Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart 96:1297–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Damman K, Masson S, Hillege HL, Maggioni AP, Voors AA, Opasich C (2011) Clinical outcome of renal tubular damage in chronic heart failure. Eur Heart J 32:2705–2712

    Article  CAS  PubMed  Google Scholar 

  81. Damman K, Ng Kam Chuen MJ, MacFadyen RJ, Lip GY, Gaze D, Collinson PO (2011) Volume status and diuretic therapy in systolic heart failure and the detection of early abnormalities in renal and tubular function. J Am Coll Cardiol 57:2233–2241

    Article  PubMed  Google Scholar 

  82. Lourenço P, Silva S, Friões F, Alvelos M, Amorim M, Torres-Ramalho P, Teles MJ, Guimarães JT, Bettencourt P (2013) Does pre-albumin predict in-hospital mortality in heart failure? Int J Cardiol 166(3):758–760

    Article  PubMed  Google Scholar 

  83. Cabassi A, de Champlain J, Maggiore U, Parenti E, Coghi P, Vicini V, Tedeschi S, Cremaschi E, Binno S, Rocco R, Bonali S, Bianconcini M, Guerra C, Folesani G, Montanari A, Regolisti G, Fiaccadori E (2013) Prealbumin improves death risk prediction of BNP-added Seattle Heart Failure Model: results from a pilot study in elderly chronic heart failure patients. Int J Cardiol 168(4):3334–3339

    Article  PubMed  Google Scholar 

  84. Lourenço P, Silva S, Friões F, Alvelos M, Amorim M, Couto M, Torres-Ramalho P, Guimarães JT, Araújo JP, Bettencourt P (2014) Low prealbumin is strongly associated with adverse outcome in heart failure. Heart 100(22):1780–1785

    Article  PubMed  CAS  Google Scholar 

  85. Cao TH, Quinn PA, Sandhu JK, Voors AA, Lang CC, Parry HM, Mohan M, Jones DJ, Ng LL (2015) Identification of novel biomarkers in plasma for prediction of treatment response in patients with heart failure. Lancet 385(Suppl 1):S26

    Article  PubMed  Google Scholar 

  86. Ottesen AH, Louch WE, Carlson CR, Landsverk OJ, Kurola J, Johansen RF, Moe MK, Aronsen JM, Høiseth AD, Jarstadmarken H, Nygård S, Bjørås M, Sjaastad I, Pettilä V, Stridsberg M, Omland T, Christensen G, Røsjø H (2015) Secretoneurin is a novel prognostic cardiovascular biomarker associated with cardiomyocyte calcium handling. J Am Coll Cardiol 65(4):339–351

    Article  CAS  PubMed  Google Scholar 

  87. Andersen IA, Huntley BK, Sandberg SS, Heublein DM, Burnett JC Jr (2016) Elevation of circulating but not myocardial FGF23 in human acute decompensated heart failure. Nephrol Dial Transplant 31(5):767–772

    Article  CAS  PubMed  Google Scholar 

  88. Poelzl G, Trenkler C, Kliebhan J, Wuertinger P, Seger C, Kaser S, Mayer G, Pirklbauer M, Ulmer H, Griesmacher A (2014) FGF23 is associated with disease severity and prognosis in chronic heart failure. Eur J Clin Investig 44(12):1150–1158

    Article  CAS  Google Scholar 

  89. Koller L, Kleber ME, Brandenburg VM, Goliasch G, Richter B, Sulzgruber P, Scharnagl H, Silbernagel G, Grammer TB, Delgado G, Tomaschitz A, Pilz S, Berger R, Mörtl D, Hülsmann M, Pacher R, März W, Niessner A (2015) Fibroblast growth factor 23 is an independent and specific predictor of mortality in patients with heart failure and reduced ejection fraction. Circ Heart Fail 8(6):1059–1067

    CAS  PubMed  Google Scholar 

  90. Wohlfahrt P, Melenovsky V, Kotrc M, Benes J, Jabor A, Franekova J, Lemaire S, Kautzner J, Jarolim P (2015) Association of fibroblast growth factor-23 levels and angiotensin-converting enzyme inhibition in chronic systolic heart failure. JACC Heart Fail 3(10):829–839

    Article  PubMed  Google Scholar 

  91. Schulte C, Westermann D, Blankenberg S, Zeller T (2015) Diagnostic and prognostic value of circulating microRNAs in heart failure with preserved and reduced ejection fraction. World J Cardiol 7(12):843–860

    Article  PubMed  PubMed Central  Google Scholar 

  92. Watson CJ, Gupta SK, O’Connell E, Thum S, Glezeva N, Fendrich J, Gallagher J, Ledwidge M, Grote-Levi L, McDonald K, Thum T (2015) MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail 17(4):405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Divakaran V, Mann DL (2008) The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res 103(10):1072–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ovchinnikova ES, Schmitter D, Vegter EL, Ter Maaten JM, Valente MA, Liu LC, van der Harst P, Pinto YM, de Boer RA, Meyer S, Teerlink JR, O'Connor CM, Metra M, Davison BA, Bloomfield DM, Cotter G, Cleland JG, Mebazaa A, Laribi S, Givertz MM, Ponikowski P, van der Meer P, van Veldhuisen DJ, Voors AA, Berezikov E (2015) Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail 18(4):414–423

    Article  PubMed  CAS  Google Scholar 

  95. Yan H, Ma F, Zhang Y, Wang C, Qiu D, Zhou K, Hua Y, Li Y (2017) miRNAs as biomarkers for diagnosis of heart failure: a systematic review and meta-analysis. Medicine (Baltimore) 96(22):e6825

    Article  CAS  Google Scholar 

  96. Lichtenauer M, Jirak P, Wernly B, Paar V, Rohm I, Jung C, Schernthaner C, Kraus J, Motloch LJ, Yilmaz A, Hoppe UC, Christian Schulze P, Kretzschmar D, Pistulli R (2017) A comparative analysis of novel cardiovascular biomarkers in patients with chronic heart failure. Eur J Intern Med 44:31–38

    Article  CAS  PubMed  Google Scholar 

  97. Gandhi PU, Gaggin HK, Redfield MM, Chen HH, Stevens SR, Anstrom KJ, Semigran MJ, Liu P, Januzzi JL Jr (2016) Insulin-like growth factor-binding protein-7 as a biomarker of diastolic dysfunction and functional capacity in heart failure with preserved ejection fraction: results from the RELAX Trial. JACC Heart Fail 4(11):860–869

    Article  PubMed  PubMed Central  Google Scholar 

  98. León LE, Rani S, Fernandez M, Larico M, Calligaris SD (2016) Subclinical detection of diabetic cardiomyopathy with microRNAs: challenges and perspectives. J Diabetes Res 2016:6143129

    Article  PubMed  Google Scholar 

  99. Dominguez-Rodriguez A, Abreu-Gonzalez P, Avanzas P (2014) Usefulness of growth differentiation factor-15 levels to predict diabetic cardiomyopathy in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol 114(6):890–894

    Article  CAS  PubMed  Google Scholar 

  100. Sokolski M, Zymliński R, Biegus J, Siwołowski P, Nawrocka-Millward S, Todd J, Yerramilli MR, Estis J, Jankowska EA, Banasiak W, Ponikowski P (2017) Urinary levels of novel kidney biomarkers and risk of true worsening renal function and mortality in patients with acute heart failure. Eur J Heart Fail 19(6):760–767

    Article  CAS  PubMed  Google Scholar 

  101. De Berardinis B, Gaggin HK, Magrini L, Belcher A, Zancla B, Femia A, Simon M, Motiwala S, Bhardwaj A, Parry BA, Nagurney JT, Coudriou C, Legrand M, Sadoune M, Di Somma S, Januzzi JL Jr, Global Research on Acute Conditions Team (GREAT) (2015) Comparison between admission natriuretic peptides, NGAL and sST2 testing for the prediction of worsening renal function in patients with acutely decompensated heart failure. Clin Chem Lab Med 53(4):613–621

    Article  PubMed  CAS  Google Scholar 

  102. Meijers WC, van der Velde AR, de Boer RA (2016) Biomarkers in heart failure with preserved ejection fraction. Neth Hear J 24(4):252–258

    Article  CAS  Google Scholar 

  103. Sanders-van Wijk S, van Empel V, Davarzani N, Maeder MT, Handschin R, Pfisterer ME, Brunner-La Rocca HP, TIME-CHF investigators (2015) Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur J Heart Fail 17(10):1006–1014

    Article  CAS  PubMed  Google Scholar 

  104. Anjan VY, Loftus TM, Burke MA, Akhter N, Fonarow GC, Gheorghiade M, Shah SJ (2012) Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction. Am J Cardiol 110(6):870–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kang SH, Park JJ, Choi DJ, Yoon CH, Oh IY, Kang SM, Yoo BS, Jeon ES, Kim JJ, Cho MC, Chae SC, Ryu KH, Oh BH, KorHF Registry (2015) Prognostic value of NT-proBNP in heart failure with preserved versus reduced EF. Heart 101(23):1881–1888

    Article  CAS  PubMed  Google Scholar 

  106. Polat N, Aydin M, Yildiz A, Acet H, Akil MA, Bilik MZ, Demir M, Isik MA, Kaya H, Alan S (2014) The prognostic significance of serum albumin in patients with acute decompensated systolic heart failure. Acta Cardiol 69(6):648–654

    Article  PubMed  Google Scholar 

  107. Tromp J, Khan MA, Klip IT, Meyer S, de Boer RA, Jaarsma T, Hillege H, van Veldhuisen DJ, van der Meer P, Voors AA (2017) Biomarker profiles in heart failure patients with preserved and reduced ejection fraction. J Am Heart Assoc 6(4).

  108. Huerta A, López B, Ravassa S, San José G, Querejeta R, Beloqui Ó, Zubillaga E, Rábago G, Brugnolaro C, Díez J, González A (2016) Association of cystatin C with heart failure with preserved ejection fraction in elderly hypertensive patients: potential role of altered collagen metabolism. J Hypertens 34(1):130–138

    Article  CAS  PubMed  Google Scholar 

  109. Mebazaa A, Di Somma S, Maisel AS, Bayes-Genis A (2015) ST2 and multimarker testing in acute decompensated heart failure. Am J Cardiol 115(7 Suppl):38B–43B

    Article  PubMed  Google Scholar 

  110. Maisel AS, Richards AM, Pascual-Figal D, Mueller C (2015) Serial ST2 testing in hospitalized patients with acute heart failure. Am J Cardiol 115(7 Suppl):32B–37B

    Article  PubMed  Google Scholar 

  111. Friões F, Lourenço P, Laszczynska O, Almeida PB, Guimarães JT, Januzzi JL, Azevedo A, Bettencourt P (2015) Prognostic value of sST2 added to BNP in acute heart failure with preserved or reduced ejection fraction. Clin Res Cardiol 104(6):491–499

    Article  PubMed  Google Scholar 

  112. Kim MS, Jeong TD, Han SB, Min WK, Kim JJ (2015) Role of soluble ST2 as a prognostic marker in patients with acute heart failure and renal insufficiency. J Korean Med Sci 30(5):569–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Friões F, Laszczynska O, Almeida PB, Silva N, Guimarães JT, Omland T, Azevedo A, Bettencourt P (2015) Prognostic value of osteoprotegerin in acute heart failure. Can J Cardiol 31(10):1266–1271

    Article  PubMed  Google Scholar 

  114. Srinivas P, Manjunath CN, Banu S, Ravindranath KS (2014) Prognostic significance of a multimarker strategy of biomarkers in acute heart failure. J Clin Diagn Res 8(9):MC01–MC06

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Perez AL, Grodin JL, Wu Y, Hernandez AF, Butler J, Metra M, Felker GM, Voors AA, McMurray JJ, Armstrong PW, Starling RC, O’Connor CM, Tang WH (2016) Increased mortality with elevated plasma endothelin-1 in acute heart failure: an ASCEND-HF biomarker substudy. Eur J Heart Fail 18(3):290–297

    Article  CAS  PubMed  Google Scholar 

  116. Ruocco G, Pellegrini M, De Gori C, Franci B, Nuti R, Palazzuoli A (2015) The prognostic combined role of B-type natriuretic peptide, blood urea nitrogen and congestion signs persistence in patients with acute heart failure. J Cardiovasc Med (Hagerstown) 17(11):818–827

    Article  CAS  Google Scholar 

  117. Behnes M, Bertsch T, Weiss C, Ahmad-Nejad P, Akin I, Fastner C, El-Battrawy I, Lang S, Neumaier M, Borggrefe M, Hoffmann U (2016) Triple head-to-head comparison of fibrotic biomarkers galectin-3, osteopontin and gremlin-1 for long-term prognosis in suspected and proven acute heart failure patients. Int J Cardiol 203:398–406

    Article  PubMed  Google Scholar 

  118. Núñez J, Rabinovich GA, Sandino J, Mainar L, Palau P, Santas E, Villanueva MP, Núñez E, Bodí V, Chorro FJ, Miñana G, Sanchis J (2015) Prognostic value of the interaction between galectin-3 and antigen carbohydrate 125 in acute heart failure. PLoS One 10(4):e0122360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Ueda T, Kawakami R, Nishida T, Onoue K, Soeda T, Okayama S, Takeda Y, Watanabe M, Kawata H, Uemura S, Saito Y (2015) Plasma renin activity is a strong and independent prognostic indicator in patients with acute decompensated heart failure treated with renin-angiotensin system inhibitors. Circ J 79(6):1307–1314

    Article  PubMed  Google Scholar 

  120. Villanueva MP, Mollar A, Palau P, Carratalá A, Núñez E, Santas E, Bodí V, Chorro FJ, Miñana G, Blasco ML, Sanchis J, Núñez J (2015) Procalcitonin and long-term prognosis after an admission for acute heart failure. Eur J Intern Med 26(1):42–48

    Article  CAS  PubMed  Google Scholar 

  121. Self WH, Storrow AB, Hartmann O, Barrett TW, Fermann GJ, Maisel AS, Struck J, Bergmann A, Collins SP (2016) Plasma bioactive adrenomedullin as a prognostic biomarker in acute heart failure. Am J Emerg Med 34(2):257–262

    Article  PubMed  Google Scholar 

  122. Shaver A, Nichols A, Thompson E, Mallick A, Payne K, Jones C, Manne ND, Sundaram S, Shapiro JI, Sodhi K (2016) Role of serum biomarkers in early detection of diabetic cardiomyopathy in the West Virginian population. Int J Med Sci 13(3):161–168

    Article  PubMed  PubMed Central  Google Scholar 

  123. Yin Z, Fan L, Jia H, Li C, Zhang R, Wang H (2012) S1P1 and S1P3 are potential markers of cardiac microangiopathy in diabetes. Med Hypotheses 79(2):168–170

    Article  CAS  PubMed  Google Scholar 

  124. Domínguez-Rodríguez A, Avanzas P, González-González J, Belleyo-Belkasem C, Abreu-González P (2016) Growth differentiation factor 15, a new prognostic marker in diabetic cardiomyopathy. Rev Esp Cardiol (Engl Ed) 69(1):81–83

    Article  Google Scholar 

  125. Ping Z, Aiqun M, Jiwu L, Liang S (2017) TNF receptor 1/2 predict heart failure risk in type 2 diabetes mellitus patients. Int Heart J 58(2):245–249

    Article  PubMed  Google Scholar 

  126. Alonso N, Lupón J, Barallat J, de Antonio M, Domingo M, Zamora E, Moliner P, Galán A, Santesmases J, Pastor C, Mauricio D, Bayes-Genis A (2016) Impact of diabetes on the predictive value of heart failure biomarkers. Cardiovasc Diabetol 15(1):151

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sharma A, Demissei BG, Tromp J Hillege HL, Cleland JG, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Davison BA, Givertz MM, Bloomfield DM, Dittrich H, van Veldhuisen DJ, Cotter G, Ezekowitz JA, Khan MAF, Voors AA (2017) A network analysis to compare biomarker profiles in patients with and without diabetes mellitusin acute heart failure. Eur J Heart Fail. doi: https://doi.org/10.1002/ejhf.912.

  128. Angeletti S, Fogolari M, Morolla D, Capone F, Costantino S, Spoto S, De Cesaris M, Lo Presti A, Ciccozzi M, Dicuonzo G (2016) Role of neutrophil gelatinase-associated lipocalin in the diagnosis and early treatment of acute kidney injury in a case series of patients with acute decompensated heart failure: a case series. Cardiol Res Pract 2016:3708210

    Article  PubMed  PubMed Central  Google Scholar 

  129. Maisel AS, Wettersten N, van Veldhuisen DJ, Mueller C, Filippatos G, Nowak R, Hogan C, Kontos MC, Cannon CM, Müller GA, Birkhahn R, Clopton P, Taub P, Vilke GM, McDonald K, Mahon N, Nuñez J, Briguori C, Passino C, Murray PT (2016) Neutrophil gelatinase-associated lipocalin for acute kidney injury during acute heart failure hospitalizations: the AKINESIS Study. J Am Coll Cardiol 68(13):1420–1431

    Article  CAS  PubMed  Google Scholar 

  130. Palazzuoli A, Ruocco G, Pellegrini M, De Gori C, Del Castillo G, Franci B, Nuti R, Ronco C (2015) Comparison of neutrophil gelatinase-associated lipocalin versus B-type natriuretic peptide and cystatin C to predict early acute kidney injury and outcome in patients with acute heart failure. Am J Cardiol 116(1):104–111

    Article  CAS  PubMed  Google Scholar 

  131. Kirbiš S, Gorenjak M, Sinkovič A (2015) The role of urine neutrophil gelatinase-associated lipocalin (NGAL) in acute heart failure in patients with ST-elevation myocardial infarction. BMC Cardiovasc Disord 15:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Yang CH, Chang CH, Chen TH, Fan PC, Chang SW, Chen CC, Chu PH, Chen YT, Yang HY, Yang CW, Chen YC (2016) Combination of urinary biomarkers improves early detection of acute kidney injury in patients with heart failure. Circ J 80(4):1017–1023

    Article  PubMed  Google Scholar 

  133. Neves FM, Meneses GC, Sousa NE, Menezes RR, Parahyba MC, Martins AM (2015) Libório AB Syndecan-1 in acute decompensated heart failure—association with renal function and mortality. Circ J 79(7):1511–1519

    Article  PubMed  Google Scholar 

  134. Shirakabe A, Hata N, Kobayashi N, Okazaki H, Shinada T, Tomita K, Yamamoto M, Tsurumi M, Matsushita M, Yamamoto Y, Yokoyama S, Asai K, Shimizu W (2015) Serum heart-type fatty acid-binding protein level can be used to detect acute kidney injury on admission and predict an adverse outcome in patients with acute heart failure. Circ J 79(1):119–128

    Article  PubMed  Google Scholar 

  135. van Veldhuisen DJ, Ruilope LM, Maisel AS, Damman K (2016) Biomarkers of renal injury and function: diagnostic, prognostic and therapeutic implications in heart failure. Eur Heart J 37(33):2577–2585

    Article  PubMed  CAS  Google Scholar 

  136. Sato Y, Nishi K, Taniguchi R, Miyamoto T, Fukuhara R, Yamane K, Saijyo S, Tanada Y, Yamamoto E, Goto T, Takahashi N, Fujiwara H, Takatsu Y (2009) In patients with heart failure and non-ischemic heart disease, cardiac troponin T is a reliable predictor of long-term echocardiographic changes and adverse cardiac events. J Cardiol 54(2):221–230

    Article  PubMed  Google Scholar 

  137. Kawahara C, Tsutamoto T, Nishiyama K, Yamaji M, Sakai H, Fujii M, Yamamoto T, Horie M (2011) Prognostic role of high-sensitivity cardiac troponin T in patients with nonischemic dilated cardiomyopathy. Circ J 75(3):656–661

    Article  PubMed  Google Scholar 

  138. Kawahara C, Tsutamoto T, Sakai H, Nishiyama K, Yamaji M, Fujii M, Yamamoto T, Horie M (2011) Prognostic value of serial measurements of highly sensitive cardiac troponin I in stable outpatients with nonischemic chronic heart failure. Am Heart J 162(4):639–645

    Article  CAS  PubMed  Google Scholar 

  139. Yu AF, Ky B (2016) Roadmap for biomarkers of cancer therapy cardiotoxicity. Heart 102(6):425–430

    Article  CAS  PubMed  Google Scholar 

  140. Lenihan DJ, Stevens PL, Massey M, Plana JC, Araujo DM, Fanale MA, Fayad LE, Fisch MJ, Yeh ET (2016) The utility of point-of-care biomarkers to detect cardiotoxicity during anthracycline chemotherapy: a feasibility study. J Card Fail 22(6):433–438

    Article  CAS  PubMed  Google Scholar 

  141. Witteles R (2016) Biomarkers as predictors of cardiac toxicity from targeted cancer therapies. J Card Fail 22(6):459–464

    Article  CAS  PubMed  Google Scholar 

  142. Holmgren G, Synnergren J, Andersson CX, Lindahl A, Sartipy P (2016) MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity. Toxicol in Vitro 34:26–34

    Article  CAS  PubMed  Google Scholar 

  143. Putt M, Hahn VS, Januzzi JL, Sawaya H, Sebag IA, Plana JC, Picard MH, Carver JR, Halpern EF, Kuter I, Passeri J, Cohen V, Banchs J, Martin RP, Gerszten RE, Scherrer-Crosbie M, Ky B (2015) Longitudinal changes in multiple biomarkers are associated with cardiotoxicity in breast cancer patients treated with doxorubicin, taxanes, and trastuzumab. Clin Chem 61(9):1164–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bahrmann P, Christ M, Hofner B, Bahrmann A, Achenbach S, Sieber CC, Bertsch T (2015) Prognostic value of different biomarkers for cardiovascular death in unselected older patients in the emergency department. Eur Heart J Acute Cardiovasc Care 5(8):568–578

    Article  PubMed  Google Scholar 

  145. Sanders-van Wijk S, van Asselt AD, Rickli H, Estlinbaum W, Erne P, Rickenbacher P, Vuillomenet A, Peter M, Pfisterer ME, Brunner-La Rocca HP, TIME-CHF Investigators (2013) Cost-effectiveness of N-terminal pro-B-type natriuretic-guided therapy in elderly heart failure patients: results from TIME-CHF (Trial of Intensified versus Standard Medical Therapy in Elderly Patients with Congestive Heart Failure). JACC Heart Fail 1(1):64–71

    Article  PubMed  Google Scholar 

  146. Brunner-La Rocca HP, Eurlings L, Richards AM, Januzzi JL, Pfisterer ME, Dahlström U, Pinto YM, Karlström P, Erntell H, Berger R, Persson H, O'Connor CM, Moertl D, Gaggin HK, Frampton CM, Nicholls MG, Troughton RW (2015) Which heart failure patients profit from natriuretic peptide guided therapy? A meta-analysis from individual patient data of randomized trials. Eur J Heart Fail 17(12):1252–1261

    Article  CAS  PubMed  Google Scholar 

  147. Kennedy DJ, Shrestha K, Sheehey B, Li XS, Guggilam A, Wu Y, Finucan M, Gabi A, Medert CM, Westfall K, Borowski A, Fedorova O, Bagrov AY, Tang WH (2015) Elevated plasma marinobufagenin, an endogenous cardiotonic steroid, is associated with right ventricular dysfunction and nitrative stress in heart failure. Circ Heart Fail 8(6):1068–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Gutte H, Mortensen J, Jensen CV, von der Recke P, Petersen CL, Kristoffersen US, Kjaer AANP (2010) BNP and D-dimer predict right ventricular dysfunction in patients with acute pulmonary embolism. Clin Physiol Funct Imaging 30(6):466–472

    Article  CAS  PubMed  Google Scholar 

  149. Dursunoğlu N, Dursunoğlu D, Yıldız Aİ, Rota Slu N (2016) Evaluation of cardiac biomarkers and right ventricular dysfunction in patients with acute pulmonary embolism. Anatol J Cardiol 16(4):276–282

    PubMed  Google Scholar 

  150. Granér M, Harjola VP, Selander T, Laiho MK, Piilonen A, Raade M, Mustonen P (2016) N- terminal Pro-brain Natriuretic peptide, high-sensitivity troponin and pulmonary artery clot score as predictors of right ventricular dysfunction in echocardiography. Heart Lung Circ 25(6):592–599

    Article  PubMed  Google Scholar 

  151. Weekes AJ, Thacker G, Troha D, Johnson AK, Chanler-Berat J, Norton HJ, Runyon M (2016) Diagnostic accuracy of right ventricular dysfunction markers in normotensive emergency department patients with acute pulmonary embolism. Ann Emerg Med 68(3):277–291

    Article  PubMed  Google Scholar 

  152. Blok IM, van Riel AC, Schuuring MJ, de Bruin-Bon RH, van Dijk AP, Hoendermis ES, Zwinderman AH, Mulder BJ, Bouma BJ (2016) The role of cystatin C as a biomarker for prognosis in pulmonary arterial hypertension due to congenital heart disease. Int J Cardiol 209:242–247

    Article  PubMed  Google Scholar 

  153. Calvier L, Legchenko E, Grimm L, Sallmon H, Hatch A, Plouffe BD, Schroeder C, Bauersachs J, Murthy SK, Hansmann G (2016) Galectin-3 and aldosterone as potential tandem biomarkers in pulmonary arterial hypertension. Heart 102(5):390–396

    Article  CAS  PubMed  Google Scholar 

  154. Wang KY, Lee MF, Ho HC, Liang KW, Liu CC, Tsai WJ, Lin WW (2015) Serum caveolin-1 as a novel biomarker in idiopathic pulmonary artery hypertension. Biomed Res Int 2015:173970

    PubMed  PubMed Central  Google Scholar 

  155. Richards M, Di Somma S, Mueller C, Nowak R, Peacock WF, Ponikowski P, Mockel M, Hogan C, Wu AH, Clopton P, Filippatos GS, Anand I, Ng L, Daniels LB, Neath SX, Shah K, Christenson R, Hartmann O, Anker SD, Maisel A (2013) Atrial fibrillation impairs the diagnostic performance of cardiac natriuretic peptides in dyspneic patients: results from the BACH Study (Biomarkers in ACute Heart Failure). JACC Heart Fail 1(3):192–199

    Article  PubMed  Google Scholar 

  156. Smith JG, Newton-Cheh C, Almgren P, Struck J, Morgenthaler NG, Bergmann A, Platonov PG, Hedblad B, Engström G, Wang TJ, Melander O (2010) Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation. J Am Coll Cardiol 56(21):1712–1719

    Article  PubMed  PubMed Central  Google Scholar 

  157. Löfsjögård J, Persson H, Díez J, López B, González A, Edner M, Mejhert M, Kahan T (2014) Atrial fibrillation and biomarkers of myocardial fibrosis in heart failure. Scand Cardiovasc J 48(5):299–303

    Article  PubMed  CAS  Google Scholar 

  158. Kaya H, Zorlu A, Yucel H, Tatlisu MA, Kivrak T, Coskun A, Yilmaz MB (2016) Higher cancer antigen 125 level is associated with the presence of permanent atrial fibrillation in systolic heart failure patients. Acta Cardiol 71(1):61–66

    Article  PubMed  Google Scholar 

  159. Senni M, Paulus WJ, Gavazzi A, Fraser AG, Díez J, Solomon SD, Smiseth OA, Guazzi M, Lam CSP, Maggioni AP, Tscho C, Metra M, Hummel SL, Edelmann F, Ambrosio G, Stewart Coats AJ, Filippatos GS, Gheorghiade M, Anker SD, Levy D, Pfeffer MA, Stough WG, Pieske BM (2014) New strategies for heart failure with preserved ejection fraction: the importance of targeted terapies for heart failure phenotypes. Eur Heart J 35:2797–2811

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Michele Correale.

Ethics declarations

The manuscript does not contain clinical studies or patient data. It is a review.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Cardiology Department, University of Foggia, Foggia, Italy, is the institution where work was performed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correale, M., Monaco, I., Brunetti, N.D. et al. Redefining biomarkers in heart failure. Heart Fail Rev 23, 237–253 (2018). https://doi.org/10.1007/s10741-018-9683-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-018-9683-2

Keywords

Navigation