Skip to main content
Log in

A New Insight into Sanger’s Development of Sequencing: From Proteins to DNA, 1943–1977

  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

Abstract

Fred Sanger, the inventor of the first protein, RNA and DNA sequencing methods, has traditionally been seen as a technical scientist, engaged in laboratory bench work and not interested at all in intellectual debates in biology. In his autobiography and commentaries by fellow researchers, he is portrayed as having a trajectory exclusively dependent on technological progress. The scarce historical scholarship on Sanger partially challenges these accounts by highlighting the importance of professional contacts, institutional and disciplinary moves in his career, spanning from 1940 to 1983. This paper will complement such literature by focusing, for the first time, on the transition of Sanger’s sequencing strategies from degrading to copying the target molecule, which occurred in the late 1960s as he was shifting from protein and RNA to DNA sequencing, shortly after his move from the Department of Biochemistry to the Laboratory of Molecular Biology, both based in Cambridge (UK). Through a reinterpretation of Sanger’s papers and retrospective accounts and a pioneering investigation of his laboratory notebooks, I will claim that sequencing shifted from the working procedures of organic chemistry to those of the emergent molecular biology. I will also argue that sequencing deserves a history in its own right as a practice and not as a technique subordinated to the development of molecular biology or genomics. My proposed history of sequencing leads to a reappraisal of current STS debates on bioinformatics, biotechnology and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abir-Am, P. 1982. ‹The Discourse of Physical Power and Biological Knowledge in the 1930s: A Reappraisal of the Rockefeller Foundation ‹Policy’ in Molecular Biology.’ Social Studies of Science 12: 341–382.

    Article  Google Scholar 

  • Abir-Am, P. 1992. ‹The Politics of Macromolecules: Molecular Biologists, Biochemists and Rhetoric.’ Osiris, Second Series 7: 164–191.

    Google Scholar 

  • Abir-Am, P. 1999. ‹The First American and French Commemorations in Molecular Biology: From Collective Memory to Comparative History.’ Osiris, Second Series 14: 324–370.

    Google Scholar 

  • Abir-Am, P. and Elliot, C.A. (eds). 1999. Osiris, Second Series 14 (special issue on “Commemorative Practices in Science: Historical Perspectives on the Politics of Collective Memory.”).

  • Armon, R. 2006. “Joseph Needham, the Mechanist-Vitalist Debate, and the Origins of Biochemistry, 1922-42.” Scientists and Social Commitment Meeting. London: Science Museum.

  • Atkinson, P, Greenslade, H, Glasner, P (eds.). 2007. New Genetics, New Identities. London:Routledge.

    Google Scholar 

  • Bergmann, M. and Niemann, C. 1938. “On the Structure of Silk Fibroin.” Jounal of Biological Chemistry. 122(2): 577–596.

  • Billeter, MA, Weissmann, C. 1969. ‹Sequence of the First 175 Nucleotides from the 5′ Terminus of Qβ RNA Synthesised in vitro.’ Nature 224: 1083–1086.

    Article  Google Scholar 

  • Bostanci, A. 2004. ‹Sequencing Human Genomes.’ JP Gaudillière, HJ Rheinberger (eds.), From Molecular Genetics to Genomics: The Mapping Cultures of Twentieth Century Biology. London:Routledge.

    Google Scholar 

  • Bostanci, A. 2005. “Response to García-Sancho,” Seminar at the ESRC Centre for Genomics in Society (Egenis), University of Exeter, UK.

  • Brandt, C. 2005. ‹Genetic Code, Text, and Scripture: Metaphors and Narration in German Molecular Biology.’ Science in Context 18(4): 629–648.

    Article  Google Scholar 

  • Brenner, S. 2001. My Life in Science. London:BioMed. (especially chs. 7–8).

    Google Scholar 

  • Brenner, S, Jacob, F, Meselson, M. 1961. ‹Unstable Intermediate Carrying Information from Genes to Ribosomes for Protein Synthesis.’ Nature 190: 576–581.

    Article  Google Scholar 

  • Bretscher, M.S. and Travers, A.A. 2003. “Obituary: John Smith.” The Independent, issue November 27th: 22(broadsheet format) or 67 (compact format).

  • Sanger, F, Brownlee, GG, Barrell, BG. 1968. ‹The Sequence of 5s Ribosomal Ribonucleic Acid.’ Journal of Molecular Biology 34(3): 379–412.

    Article  Google Scholar 

  • Chargaff, E. 1978. Heraclitean Fire: Sketches from a Life Before Nature. New York:Rockefeller University Press.

    Google Scholar 

  • Chiang, H. 2007. “Separating Molecules, Building Biology: The Evolution of Electrophoretic Instrumentation and the Material Epistemology of Molecular Biology, 1945-1965.” Biennial Meeting of the International Society for the History, Philosophy and Social Studies of Biology. University of Exeter.

  • Chibnall, C. 1942. ‹Amino-Acid Analysis and the Structure of Proteins.’ Proceedings of the Royal Society of London, Series B 131: 136–160.

    Article  Google Scholar 

  • Clarke, H. 1944. ‹Obituary: Max Bergmann, 1886-1944).’ Science 102: 168–170.

    Article  Google Scholar 

  • Consden, R, Gordon, A, Martin, A. 1944. ‹Qualitative Analysis of Proteins: A Partition Chromatographic Method Using Paper.’ Biochemical Journal 38: 224–232.

    Google Scholar 

  • Consden, R, Gordon, A, Martin, A, Synge, R. 1947. ‹Gramicidin S: The Sequence of the Amino-Acid Residues.’ Biochemical Journal 41: 596–602.

    Google Scholar 

  • Cook-Deegan, R. 1994. The Gene Wars: Science, Politics and the Human Genome. London:W.W. Norton and Company.

    Google Scholar 

  • Coulson, A. 2005. Interview with Miguel García-Sancho. Cambridge:Laboratory of Molecular Biology.

    Google Scholar 

  • Creager, A. 1998. ‹Producing Molecular Therapeutics from Human Blood: Edwin Cohn’s Wartime Enterprise.’ S de Chadarevian, H Kamminga (eds.), Molecularizing Biology and Medicine: New Practices and Alliances, 1910s-1970s. London:Harwood.

    Google Scholar 

  • Creager, A. and Santesmases, M.J. (eds.). 2006. “Radiobiology in the Atomic Age: Changing Research Practices and Policies in Comparative Perspective.” Journal of the History of Biology 39(special issue): 637–647.

    Google Scholar 

  • Crick, F. 1958. ‹On Protein Synthesis.’ Symposium of the Society for Experimental Biology 12: 138–163.

    Google Scholar 

  • Crick, F. 1988. What Mad Pursuit: A Personal View of Scientific Discovery. New York:Basic Books, pp. 102–107.

    Google Scholar 

  • de Chadarevian, S. 1996. ‹Sequences, Conformation, Information: Biochemists and Molecular Biologists in the 1950s.’ Journal of the History of Biology 29: 361–386.

    Article  Google Scholar 

  • de Chadarevian, S. 1998. ‹Following Molecules: Hemoglobin Between the Clinic and the Laboratory.’ S de Chadarevian, H Kamminga (eds.), Molecularizing Biology and Medicine: New Practices and Alliances, 1910s–1970s. London:Harwood.

    Chapter  Google Scholar 

  • de Chadarevian, S. 1999. ‹Protein Sequencing and the Making of Molecular Genetics.’ Trends in Biochemical Sciences 24: 203–206.

    Article  Google Scholar 

  • de Chadarevian, S. 2002. Designs for Life: Molecular Biology after World War II. Cambridge:Cambridge University Press.

    Google Scholar 

  • de Chadarevian, S, Gaudillière, JP. 1996. ‹The Tools of the Discipline: Biochemists and Molecular Biologists.’ Journal of the History of Biology 29: 327–330.

    Article  Google Scholar 

  • de Chadarevian, S, Kamminga, H (eds.). 1998. Molecularizing Biology and Medicine: New Practices and Alliances, 1910s-1970s. London:Harwood.

    Google Scholar 

  • Dingman, CW, Peacock, AC. 1968. ‹Analytical Studies on Nuclear Ribonucleic Acid Using Polyacrylamide Gel Electrophoresis.’ Biochemistry 7(2): 659–668.

    Article  Google Scholar 

  • Edgerton, D. 1999. “From Innovation to Use: Ten Eclectic Theses on the Historiography of Technology.” History and Technology, 16: 111–136. French version available at Annales HSS 4–5, 1998.

  • Edgerton, D. 2006. The Shock of the Old. Technology and Global History since 1900. Oxford:Oxford University Press.

    Google Scholar 

  • Edman, P. 1950. ‹Method for Determination of the Amino Acid Sequence in Peptides.’ Acta Chemica Scandinavica 4: 283–293.

    Article  Google Scholar 

  • Edsall, J.T. 1979. “The Development of the Physical Chemistry of Proteins, 1898–1940.” Annals of the New York Academy of Sciences 325: 53–76. Special issue on The Origins of Modern Biochemistry: A Retrospect on Proteins.

  • Ferry, G. 1998. Dorothy Hodgkin: A Life. London:Granta. (especially chs. 7-8).

    Google Scholar 

  • Fiers, W, et al. 1976. ‹Complete Nucleotide-Sequence of Bacteriophage MS2-RNA: Primary and Secondary Structure of Replicase Gene.’ Nature 260: 500–507.

    Article  Google Scholar 

  • Fischer, E. 1902. “Über die Hydrolyse der Proteïnstoffe.” Chemiker Zeitung 26:939–940.

    Google Scholar 

  • Fischer, E. 1907. “Synthetical Chemistry in its Relation to Biology.” Journal of the Chemical Society Transactions 91: 1749–1765.

    Google Scholar 

  • Florkin, M. 1972–1977. “A History of Biochemistry.” Florkin, M. and Stotz, E. (eds.), Comprehensive Biochemistry. Elsevier, New York (especially Vol. 30 and 32).

  • Fox Keller, E. 1995. Refiguring Life: Changing Metaphors in 20 th Century Biology. New York:Columbia University Press.

  • Fox Keller, E. 2000. The Century of the Gene. Cambridge:Harvard University Press.

    Google Scholar 

  • Fruton, J. 1972. Molecules and Life: Historical Essays on the Interplay of Chemistry and Biology. New York:Wiley-Interscience.

    Google Scholar 

  • Fruton, J. 1979. “Early Theories of Protein Structure”. Annals of the New York Academy of Sciences 325: 1–20. Special issue on The Origins of Modern Biochemistry: A Retrospect on Proteins.

  • Fruton, J. 1985. ‹Contrasts in Scientific Style. Emil Fischer and Franz Hofmeister: Their Research Groups and Their Theory of Protein Structure.’ Proceedings of the American Philosophical Society 129(4): 313–370.

    Google Scholar 

  • Fruton, J. 1992. A Skeptical Biochemist. Cambridge:Harvard University Press.

    Google Scholar 

  • Fruton, J. 1999. Proteins, Enzymes, Genes: The Interplay of Chemistry and Biology. New Haven:Yale University Press.

    Google Scholar 

  • García-Sancho, M. 2007a. “The Rise and Fall of the Idea of Genetic Information (1948-2006).” Genomics, Society and Policy 2(3). http://www.hss.ed.ac.uk/genomics/vol2no3/Garcia-sanchoabstract.htm.

  • García-Sancho, M. 2007b. “Mapping and Sequencing Information: The Social Context for the␣Genomics Revolution.” Endeavour 31(1): 18–23. http://dx.doi.org/10.1016/j.endeavour.2007.01.006.

  • García-Sancho, M. 2008. Sequencing as a Way of Work: A History of its Emergence and Mechanisation – From Proteins to DNA, 1945-2000. PhD Thesis, Centre for the History of Science, Imperial College, London.

  • Garesse, R. 1987. ‹Secuenciación de DNA y síntesis de oligonucleótidos [“DNA Sequencing and Oligonucleotide Synthesis”].’ M Vicente, J Renart (eds.), Ingeniería Genética [Genetic Engineering]. Madrid:Consejo Superior de Investigaciones Científicas.

    Google Scholar 

  • Garesse, R. 1994. ‹Presente y futuro de las técnicas de secuenciación de DNA [“Present and Future of the DNA Sequencing Techniques”].’ M Vicente (ed.), Avances en Ingeniería Genética [Advances in Genetic Engineering]. Madrid:Consejo Superior de Investigaciones Científicas.

    Google Scholar 

  • Garesse, R. 2005. Interview with Miguel García-Sancho. Madrid: “Alberto Sols” Institute for Biomedical Investigations (in Spanish).

  • Gaudillière, J.P. 1992. “J. Monod, S. Spiegelman et l’adaptation enzymatique: programmes de recherche, cultures locales et traditions disciplinaires.” History and Philosophy of the Life Sciences 14: 29–98.

  • Gaudillière, JP. 2002. Inventer la biomédicine: la France, l’Amérique et la production des savoirs du vivant (1945-1965). Paris:La Découverte.

    Google Scholar 

  • Gay, H. 2007. The History of Imperial College London 1907-2007: Higher Education and Research in Science, Technology and Medicine. London:Imperial College Press.

    Book  Google Scholar 

  • Gilbert, W. 1980. “DNA Sequencing and Gene Structure,” Nobel Lecture. www.nobel.se/chemistry/laureates/1980/gilbert-lecture.html.

  • Gilbert, W. 1992. “A Vision of the Grail.” Kevles, D. and Hood, L. (eds.) The Code of Codes; Scientific and Social Issues in the Human Genome Project. Cambridge: Harvard University Press.

  • Gordon, A.H. 1979. “Electrophoresis and Chromatography of Amino Acids and Proteins.” Annals of the New York Academy of Sciences 325: 95–106. Special issue on The Origins of Modern Biochemistry: A Retrospect on Proteins

  • Gordon, AH, Martin, AJP, Synge, RLM. 1943. ‹The Amino Acid Composition of Gramicidin.’ Biochemical Journal 37(1): 86–92.

    Google Scholar 

  • Goven, J. 2008. “Shaping the ELSA Agenda: New Technologies and Old Politics,” International Conference of the UK Genomics Network and the Dutch Centre for Society and Genomics, Amsterdam.

  • Hartley, B. 1970. “The Primary Structure of Proteins.” T.W. Goodwin (ed.), British Biochemistry: Past and Present, Biochemical Society Symposia, no. 30. London: Academic Press, 29–41.

  • Hartley, B. 2004. ‹The First Floor, Department of Biochemistry, University of Cambridge.’ IUBMB Life 56(7): 437–439.

    Article  Google Scholar 

  • Hirs, C, Moore, S, Stein, W. 1960. ‹The Sequence of the Amino Acid Residues in Performic Acid-Oxidized Ribonuclease.’ Journal of Biological Chemistry 235(3): 633–647.

    Google Scholar 

  • Hofmeister, F. 1902. ‹Über Bau und Gruppierung der Eiweisskörper.’ Ergebnisse der Physiologie 1: 759–802.

    Google Scholar 

  • Holmes, FL. 2001. Meselson, Stahl and the Replication of DNA: A History of ‹The Most Beautiful Experiment in Biology’. New Heaven:Yale University Press.

    Google Scholar 

  • Holmes, FL. 2006. Reconceiving the Gene: Seymour Benzer’s Adventures in Phage Genetics. New Heaven:Yale University Press.

    Google Scholar 

  • Ingram, V. 1956. ‹A Specific Chemical Difference Between the Globins of Normal Human and Sickle-Cell Anaemia Haemoglobins.’ Nature 178: 792–794.

    Article  Google Scholar 

  • Jackson, C. 2007. “Making Substances Speak: The Public and Private Voices of Justus Liebig’s Organic Chemistry,” Annual Meeting of the British Society for the History of Science, University of Manchester.

  • Jeppesen, P, Barrell, B, Sanger, F, Coulson, A. 1972. ‹Nucleotide Sequences of Two Fragments from the Coat-Protein Cistron of Bacteriophage R17 Ribonucleic Acid.’ Biochemical Journal 128(5): 993–1006.

    Google Scholar 

  • Judson, HF. 1979. The Eight Day of Creation: Makers of the Revolution in Biology. London:Cape.

    Google Scholar 

  • Judson, HF. 1992. ‹A History of the Science and Technology Behind Gene Mapping and Sequencing.’ DJ Kevles, L Hood (eds.), The Code of Codes: Scientific and Social Issues in the Human Genome Project. Cambridge:Harvard University Press.

    Google Scholar 

  • Kay, L. 1988. ‹Laboratory Technology and Biological Knowledge: The Tiselius Electrophoresis Apparatus, 1930–1945.’ History and Philosophy of the Life Sciences 10(1): 51–72.

    Google Scholar 

  • Kay, L. 1993. The Molecular Vision of Life: Caltech, the Rockefeller Foundation and the Rise of the New Biology. New York:Oxford University Press.

    Google Scholar 

  • Kay, L. 2000. Who Wrote the Book of Life: A History of the Genetic Code. Stanford:Stanford University Press.

    Google Scholar 

  • Kevles, DJ, Hood, L (eds.). 1992. The Code of Codes: Scientific and Social Issues in the Human Genome Project. Cambridge:Harvard University Press.

    Google Scholar 

  • Kohler, R. 1982. From Medical Chemistry to Biochemistry. Cambridge:Cambridge University Press.

    Google Scholar 

  • Kornberg, A. 1987. ‹The Two Cultures: Chemistry and Biology.’ Biochemistry 26: 6888–6891.

    Article  Google Scholar 

  • Lagnado, J. 2005. “Questions and Answers with Fred Sanger.” The Biochemist 27(6): 37–39

    Google Scholar 

  • Lean, T. 2008. “In Just a Day You’ll be Talking to it Like an Old Friend: the Development of the 1980s Home Microcomputer in Britain,” Lunchtime Seminar Series, Centre for the History of Science, University of Manchester.

  • Martin, A. 1952. “The Development of Partition Chromatography,” Nobel Lecture. www.nobel.se/chemistry/laureates/1952/martin-lecture.html.

  • Martin, A, Synge, R. 1941. ‹A New Form of Chromatogram Employing Two Liquid Phases.’ Biochemical Journal 35: 1358–1368.

    Google Scholar 

  • Matthaei, H, Nirenberg, M. 1961. ‹Characterisation and Stabilisation of DNAase-Sensitive Protein Synthesis in E. coli extracts.’ Proceedings of the National Academy of Sciences 47: 1580–1588.

    Article  Google Scholar 

  • Maxam, A, Gilbert, W. 1977. ‹A New Method for Sequencing DNA.’ Proceedings of the National Academy of Sciences 74: 560–564.

    Article  Google Scholar 

  • Moore, S. and Stein, W. 1972. “The Chemical Structure of Pancreatic Ribonuclease and Deoxiribonuclease,” Nobel Lecture. www.nobel.se/chemistry/laureates/1972/moore-lecture.html.

  • Morange, M. 1998. A History of Molecular Biology. Cambridge:Harvard University Press.

    Google Scholar 

  • Morris, P. 1998. ‹Chromatograph.’ R Bud (ed.), Instruments of Science: An Historical Encyclopaedia. London:Science Museum.

    Google Scholar 

  • Mullis, K. 1998. Dancing Naked in the Mind Field. New York:Vintage Books.

    Google Scholar 

  • Murray, K. 1970. ‹Nucleotide Maps of Digests of Deoxyribonucleic Acids.’ Biochemical Journal 118: 831–841.

    Google Scholar 

  • Neuberger, A. 1939. ‹Chemical Criticism of the Cyclol and Frequency Hypothesis of Protein Structure.’ Proceedings of the Royal Society of London, Series B 127: 25–26.

    Google Scholar 

  • Nirenberg, M, Matthaei, H. 1961. ‹The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides.’ Proceedings of the National Academy of Sciences 47: 1588–1602.

    Article  Google Scholar 

  • Olby, R. 1990. “The Molecular Revolution in Biology.” R. Olby, G. Cantor, J. Christie, and J. Hodge (eds), Companion to the History of Modern Science. London: Routledge.

  • Olby, R. 1992[1974]. The Path to the Double Helix: The Discovery of DNA. New York:Courier Dover Publications.

    Google Scholar 

  • Onaga, L. 2005. “Ray Wu and DNA Sequencing,” paper presented at the ISHPSSB 2005 Meeting, University of Guelph.

  • Paul, D. 1984. ‹Eugenics and the Left.’ Journal of the History of Ideas 45(4): 567–590.

    Article  Google Scholar 

  • Peacock, AC, Dingman, CW. 1968. ‹Molecular Weight Estimation and Separation of Ribonucleic Acids by Electrophoresis in Agarose-Acrylamide Composite Gels.’ Biochemistry 7(2): 668–674.

    Article  Google Scholar 

  • Pederson, K. 1983. ‹The Svedberg and Arne Tiselius. The Early Development of Protein Chemistry at Uppsala.’ G Semenza (ed.), Selected Topics in the History of Biochemistry: Personal Recollections (Comprehensive Biochemistry), 35 vols. New York:Elsevier.

    Google Scholar 

  • Pickstone, J. 2001. Ways of Knowing: A New History of Science, Technology and Medicine. Chicago:Chicago University Press.

    Google Scholar 

  • Pickstone, J. 2007. ‹Working Knowledges Before and After Circa 1800: Practices and Disciplines in the History of Science, Technology, and Medicine.’ Isis 98: 489–516.

    Article  Google Scholar 

  • Pierrel, J. 2008. “Des RNAses à l’RNA: Walter Fiers,” Chapter of Ongoing Ph.D Dissertation. Bench-Side Story. RNA Sequencing as a Laboratory Practice in the 1960s and 1970s in Cambridge, Ghent and Strasburg. Centre for Interdisciplinary Research on Science and Technology, University Louis Pasteur, Strasbourg.

  • Pirie, W. 1939. ‹Amino-Acid Analysis and Protein Structure.’ Annual Report of the Chemical Society 36: 351–353.

    Google Scholar 

  • Rheinberger, HJ. 1993. ‹Experiment and Orientation: Early Systems of in vitro Protein Synthesis.’ Journal of the History of Biology 26: 443–471.

    Article  Google Scholar 

  • Rheinberger, HJ. 1997. Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube. Stanford:Stanford University Press.

    Google Scholar 

  • Rheinberger, HJ, Gaudillière, JP. 2004a. Classical Genetic Research and its Legacy: The Mapping Cultures of 20 th Century Biology. London:Routledge.

    Book  Google Scholar 

  • Rheinberger, HJ, Gaudillière, JP. 2004b. From Molecular Genetics to Genomics: The Mapping Cultures of Twentieth Century Biology. London:Routledge.

    Google Scholar 

  • Robertson, HD, Barrell, B, Weith, H, Donelson, J. 1973. ‹Isolation and Sequence Analysis of a Ribosome-Protected Fragment from Bacteriophage ØX 174 DNA.’ Nature New Biology 241: 38–40.

    Article  Google Scholar 

  • Rose, N. 2006. The Politics of Life Itself: Biomedicine, Power and Subjectivity in the Twenty-First Century. Princeton:Princeton University Press.

    Google Scholar 

  • Sanger, F. 1945. ‹The Free Amino Groups of Insulin.’ Biochemical Journal 39: 507–515.

    Google Scholar 

  • Sanger, F. 1946. ‹The Free Amino Group of Gramicidin S.’ Biochemical Journal 40(2): 261–262.

    Google Scholar 

  • Sanger, F. 1949a. ‹The Terminal Peptides of Insulin.’ Biochemical Journal 45: 563–574.

    Google Scholar 

  • Sanger, F. 1949b. ‹Some Chemical Investigations on the Structure of Insulin.’ Cold Spring Harbor Symposia on Quantitative Biology: Amino Acids and Proteins 14: 153–160.

    Google Scholar 

  • Sanger, F. 1959. ‹Chemistry of Insulin.’ Science 129: 1340–1344.

    Article  Google Scholar 

  • Sanger, F. 1963. “Amino Acid Sequences in the Active Centres of Certain Enzymes.” Proceedings of the Chemical Society 5: 76–83.

    Google Scholar 

  • Sanger, F. 1975. “The Croonian Lecture.” Proceedings of the Royal Society of London, Series B 191:317–333.

  • Sanger, F. 1980. “Determination of Nucleotide Sequences in DNA.” Nobel Lecture. www.nobel.se/chemistry/laureates/1980/sanger-lecture.html.

  • Sanger, F. 1987. Interview with Horace F. Judson. London: Biochemical Society. Video available through the Biochemical Society.

  • Sanger, F. 1988. ‹Sequences, Sequences and Sequences.’ Annual Review of Biochemistry 57: 1–29.

    Article  Google Scholar 

  • Sanger, F. 1992. Interview with G.G. Brownlee. London: Imperial College. Video available through the Biochemical Society.

  • Sanger, F. 2005. Interview with Miguel García-Sancho. Hinxton (Cambridge):Sanger Institute.

    Google Scholar 

  • Sanger, F, Brown, H, Kitai, R. 1955. ‹The Structure of Pig and Sheep Insulins.’ Biochemical Journal 60: 556–564.

    Google Scholar 

  • Sanger, F, Brownlee, GG, Barrell, B. 1965. ‹A Two-Dimensional Fractionation Procedure for Radioactive Nucleotides.’ Journal of Molecular Biology 13(2): 373–398.

    Article  Google Scholar 

  • Sanger, F, Coulson, A. 1975. ‹A Rapid Method for Determining Sequences in DNA by Primed Synthesis with DNA Polymerase.’ Journal of Molecular Biology 94: 441–448.

    Article  Google Scholar 

  • Sanger, F. and Coulson, A., et al. 1982. “Nucleotide Sequence of Bacteriophage λ DNA.” Journal of Molecular Biology 162(4).

  • Sanger, F, Donelson, JE, Coulson, A, et al. 1973. ‹Use of DNA Polymerase I Primed by a Synthetic Oligonucleotide to Determine a Nucleotide Sequence in Phage f1 DNA.’ Proceedings of the National Academy of Sciences 70(4): 1209–1213.

    Article  Google Scholar 

  • Sanger, F. and Dowding, M. (eds). 1996. Selected Papers of Frederick Sanger (with Commentaries). London: World Scientific, pp. 7–8, 339–344.

  • Sanger, F, Hartley, B, Naughton, M. 1959. ‹The Amino Acid Sequence Around the Reactive Serine of Elastase.’ Biochemical and Biophysical Acta 34: 243–244.

    Article  Google Scholar 

  • Sanger, F, Milstein, C. 1961. ‹An Amino Acid Sequence in the Active Centre of Phosphoglucomutase.’ Biochemical Journal 79: 456–469.

    Google Scholar 

  • Sanger, F, Nicklen, S, Coulson, A. 1977. ‹DNA Sequencing with Chain Terminating Inhibitors.’ Proceedings of the National Academy of Sciences 74: 5463–5467.

    Article  Google Scholar 

  • Sanger, F, Thompson, EO. 1953a. ‹The Amino-Acid Sequence in the Glycyl Chain of Insulin: 2. The Identification of Lower Peptides from Partial Hydrolysates.’ Biochemical Journal 53(3): 353–366.

    Google Scholar 

  • Sanger, F, Thompson, EO. 1953b. ‹The Amino-Acid Sequence in the Glycyl Chain of Insulin: II. The Investigation of Peptides from Enzymic Hydrolysates.’ Biochemical Journal 53(3): 366–374.

    Google Scholar 

  • Sanger, F, Tuppy, H. 1951a. ‹The Amino-Acid Sequence in the Phenylalanyl Chain of Insulin: I. The Identification of Lower Peptides from Partial Hydrolysates.’ Biochemical Journal 49(4): 463–481.

    Google Scholar 

  • Sanger, F, Tuppy, H. 1951b. ‹The Amino-Acid Sequence in the Phenylalanyl Chain of Insulin: II. The Investigation of Peptides from Enzymic Hydrolysates.’ Biochemical Journal 49(4): 481–490.

    Google Scholar 

  • Santesmases, MJ. 2002. ‹Enzymology at the Core: Primers and Templates in Severo Ochoa’s Transition from Biochemistry to Molecular Biology.’ History and Philosophy of the Life Sciences 24: 193–218.

    Article  Google Scholar 

  • Sarkar, S. 1996. “Biological Information: A Sceptical Look at Some Central Dogmas in Molecular Biology.” S. Sarkar (ed.), The Philosophy and History of Molecular Biology: New Perspectives. Dordrecht, The Netherlands, pp. 187–233. Reprinted in S. Sarkar (2005) Molecular Models of Life: Philosophical Papers on Molecular Biology. MIT Press, Cambridge.

  • Sarkar, S. 1998. Genetics and Reductionism. Cambridge:Cambridge University Press.

    Google Scholar 

  • Sloan, PR (ed.). 2000. Controlling our Destinies: Historical, Philosophical, Ethical and Theological Perspectives on the Human Genome Project. Indiana:University of Notre Dame.

    Google Scholar 

  • Smith, E.L. 1979. “Amino Acid Sequences of Proteins: The Beginnings.” Annals of the New York Academy of Sciences 325: 107–120. Special issue on The Origins of Modern Biochemistry: A Retrospect on Proteins

  • Spackman, D, Stein, W, Moore, S. 1958. ‹Automatic Recording Apparatus for Use in the Chromatography of Amino Acids.’ Analytical Chemistry 30(7): 1190–1207.

    Article  Google Scholar 

  • Stent, GS. 1968. ‹That was the Molecular Biology that was.’ Science 160: 390–395.

    Article  Google Scholar 

  • Strasser, B. 2006. ‹A World in One Dimension: Linus Pauling, Francis Crick and the Central Dogma of Molecular Biology.’ History and Philosophy of the Life Sciences 28: 491–512.

    Google Scholar 

  • Stretton, A. 2002. ‹The First Sequence: Fred Sanger and Insulin.’ Genetics 162: 527–532.

    Google Scholar 

  • Sutcliffe, JG. 1995. ‹pBR322 and the Advent of Rapid DNA Sequencing.’ Trends in Biochemical Sciences 20(2): 87–90.

    Article  Google Scholar 

  • Synge, R. and Williams, E. 1990. “Albert Charles Chibnall.” Biographical Memoirs of Fellows of the Royal Society 35: 57–96.

  • Tauber, A.I. and Sarker, S. 1992. ‹The Human Genome Project: Has Blind Reductionism Gone too Far?’ Perspectives in Biology and Medicine 35(2): 220–235.

    Google Scholar 

  • Thurtle, P. 1998. ‹Electrophoretic Apparatus.’ R Bud (ed.), Instruments of Science: An Historical Encyclopaedia. London:Science Museum.

    Google Scholar 

  • Tutton, R. 2008. “Banking Expectations: The Promises and Problems of Biobanks,” International Conference of the UK Genomics Network and the Dutch Centre for Society and Genomics, Amsterdam.

  • Watson, J. 1969. The Double Helix: A Personal Account of the Discovery of the Structure of DNA. New York:New American Library.

    Google Scholar 

  • Watson, J. 2003. DNA: The Secret of Life. London:Heinemann.

    Google Scholar 

  • Watson, J, Crick, F. 1953a. ‹Molecular Structure of Nucleic Acids. A Structure for Deoxyribose Nucleic Acid.’ Nature 171: 737–738.

    Article  Google Scholar 

  • Watson, J, Crick, F. 1953b. ‹Genetical Implications of the Structure of Deoxyribonucleic Acid.’ Nature 171: 964–967.

    Article  Google Scholar 

  • Weatherall, M, Kamminga, H. 1992. Dynamic Science: Biochemistry in Cambridge, 1898-1949. Cambridge:Cambridge Wellcome Unit Publications.

    Google Scholar 

  • Wills, C. 1991. Exons, Introns and Talking Genes: The Science behind the Human Genome Project New York: Basic Books.

  • Wu, R. 1994. ‹Development of the Primer-Extension Approach: A Key Role in DNA Sequencing.’ Trends in Biochemical Sciences 19: 429–433.

    Article  Google Scholar 

  • Wu, R, Kaiser, A. 1968. ‹Structure and Base Sequence in the Cohesive Ends of Bacteriophage Lambda DNA.’ Journal of Molecular Biology 35: 523–537.

    Article  Google Scholar 

  • Wu, R, Taylor, E. 1971. ‹Nucleotide Sequence Analysis of DNA. II. Complete Nucleotide Sequence of the Cohesive Ends of Bacteriophage λ DNA.’ Journal of Molecular Biology 57: 491–511.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel García-Sancho.

Additional information

A substantial part of the investigations reported in this paper were conducted during the development of my PhD at the Centre for the History of Science, Imperial College, London, and a short postdoctoral stay at the Centre for the History of Science, University of Manchester (UK).

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Sancho, M. A New Insight into Sanger’s Development of Sequencing: From Proteins to DNA, 1943–1977. J Hist Biol 43, 265–323 (2010). https://doi.org/10.1007/s10739-009-9184-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10739-009-9184-1

Keywords

Navigation