Skip to main content

Advertisement

Log in

Functional role of EMMPRIN in the formation and mineralisation of dental matrix in mouse molars

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Our previous research has shown that the extracellular matrix metalloproteinase inducer (EMMPRIN) is expressed during and may function in the early development of tooth germs. In the present study, we observed the specific expression of EMMPRIN in ameloblasts and odontoblasts during the middle and late stages of tooth germ development using immunohistochemistry. Furthermore, to extend our understanding of the function of EMMPRIN in odontogenesis, we used an anti-EMMPRIN function-blocking antibody to remove EMMPRIN activity in tooth germ culture in vitro. Both the formation and mineralisation of dental hard tissues were suppressed in the tooth germ culture after the abrogation of EMMPRIN. Meanwhile, significant reductions in VEGF, MMP-9, ALPL, ameloblastin, amelogenin and enamelin expression were observed in antibody-treated tooth germ explants compared to control and normal serum-treated explants. The current results illustrate that EMMPRIN may play a critical role in the processing and maturation of the dental matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal SM, Yong VW (2011) The many faces of EMMPRIN—roles in neuroinflammation. Biochim Biophys Acta 1812(2):213–219. doi:10.1016/j.bbadis.2010.07.018

    Article  CAS  PubMed  Google Scholar 

  • Berditchevski F, Chang S, Bodorova J, Hemler ME (1997) Generation of monoclonal antibodies to integrin associated proteins. Evidence that α3β1 complexes with EMMPRIN/basigin/OX47/M6. J Biol Chem 272(46):29174–29180

    Article  CAS  PubMed  Google Scholar 

  • Biswas C, Nugent MA (1987) Membrane association of collagenase stimulatory factor(s) from B-16 melanoma cells. J Cell Biochem 35(3):247–258. doi:10.1002/jcb.240350307

    Article  CAS  PubMed  Google Scholar 

  • Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H, Nabeshima K (1995) The human tumor cell-derived collagenasestimulatory factor (renamed EMMPRIN) is a member of theimmunoglobulin superfamily. Cancer Res 55(2):434–439

    CAS  PubMed  Google Scholar 

  • Bougatef F, Quemener C, Kellouche S, Naïmi B, Podgorniak MP, Millot G, Gabison EE, Calvo F, Dosquet C, Lebbé C, Menashi S, Mourah S (2009) EMMPRIN promotes angiogenesis through hypoxia-inducible factor-2alpha-mediated regulation of soluble VEGF isoforms and their receptor VEGFR-2. Blood 114(27):5547–5556. doi:10.1182/blood-2009-04-217380

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Xiang J, Li C (2009) Expression of extracellular matrix metalloproteinase inducer and enhancement of the production of matrix metalloproteinase-1 in tongue squamous cell carcinoma. Int J Oral Maxillofac Surg 38(8):880–885. doi:10.1016/j.ijom.2009.03.004

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439. doi:10.1038/380435a0

    Article  CAS  PubMed  Google Scholar 

  • Caudroy S, Polette M, Tournier JM, Burlet H, Toole B, Zucker S, Birembaut P (1999) Expression of the extracellular matrix metalloproteinase inducer (EMMPRIN) and the matrix metalloproteinase-2 in bronchopulmonary and breast lesions. J Histochem Cytochem 47(12):1575–1580. doi:10.1177/002215549904701209

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Chen G, Feng L, Jiang Z, Guo W, Yu M, Tian W (2014) Expression of Nfic during root formation in first mandibular molar of rat. J Mol Histol (Epub ahead of print). doi:10.1007/s10735-014-9588-x

  • Ellis SM, Nabeshima K, Biswas C (1989) Monoclonal antibody preparation and purification of a tumor cell collagenase-stimulatory factor. Cancer Res 49(12):3385–3391

    CAS  PubMed  Google Scholar 

  • Emingil G, Tervahartiala T, Mãntylã P, Määttä M, Sorsa T, Atilla G (2006) Gingival crevicular fluid matrix metalloproteinase (MMP)-7, extracellular MMP inducer, and tissue inhibitor of MMP-1 levels in periodontal disease. J Periodontol 77(12):2040–2050. doi:10.1902/jop.2006.060144

    Article  CAS  PubMed  Google Scholar 

  • Fadool JM, Linser PJ (1993) Differential glycosylation of the 5A11/HT7 antigen by neural retina and epithelial tissues in the chicken. J Neurochem 60(4):1354–1364. doi:10.1111/j.1471-4159.1993.tb03296.x

    Article  CAS  PubMed  Google Scholar 

  • Fan QW, Kadomatsu K, Uchimura K, Muramatsu T (1998) Embigin/basigin subgroup of the immunoglobulin superfamily: different modes of expression during mouse embryogenesis and correlated expression with carbohydrate antigenic markers. Dev Growth Differ 40(3):277–286. doi:10.1046/j.1440-169X.1998.t01-1-00003.x

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442. doi:10.1038/380439a0

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP (2012) The monocarboxylate transporter family—structure and functional characterization. IUBMB Life 64(1):1–9. doi:10.1002/iub.573

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Wang C, Wei L, Wang J, Fan Y, Wang L, Wang Y, Chen T (2008) Resveratrol inhibits EMMPRIN expression via P38 and ERK1/2 pathways in PMA-induced THP-1 cells. Biochem Biophys Res Commun 374(3):517–521. doi:10.1016/j.bbrc.2008.07.058

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Hu X, Lin C, Chen S, Huang F, Zhang Y (2014) Genome-wide analysis of gene expression in human embryonic tooth germ. J Mol Histol (Epub ahead of print). doi:10.1007/s10735-014-9580-5

  • Igakura T, Kadomatsu K, Kaname T, Muramatsu H, Fan QW, Miyauchi T, Toyama Y, Kuno N, Yuasa S, Takahashi M, Senda T, Taguchi O, Yamamura K, Arimura K, Muramatsu T (1998) A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in peri-implantation development and spermatogenesis. Dev Biol 194(2):152–165. doi:10.1006/dbio.1997.8819

    Article  CAS  PubMed  Google Scholar 

  • Kanyenda LJ, Verdile G, Boulos S, Krishnaswamy S, Taddei K, Meloni BP, Mastaglia FL, Martins RN (2011) The dynamics of CD147 in Alzheimer’s disease development and pathology. J Alzheimers Dis 26(4):593–605. doi:10.3233/JAD-2011-110584

    CAS  PubMed  Google Scholar 

  • Kero D, Kalibovic Govorko D, Vukojevic K, Cubela M, Soljic V, Saraga-Babic M (2014) Expression of cytokeratin 8, vimentin, syndecan-1 and ki-67 during human tooth development. J Mol Histol 45(6):627–640. doi:10.1007/s10735-014-9592-1

    Article  CAS  PubMed  Google Scholar 

  • Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP (2000) CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J 19(15):3896–3904. doi:10.1093/emboj/19.15.3896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169(4):681–691. doi:10.1083/jcb.200409115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lei H, Liu H, Ding Y, Ge L (2014) Immunohistochemical localization of Pax6 in the developing tooth germ of mice. J Mol Histol 45(4):373–379. doi:10.1007/s10735-014-9564-5

    Article  CAS  PubMed  Google Scholar 

  • Li R, Huang L, Guo H, Toole BP (2001) Basigin (murine EMMPRIN) stimulates matrix metalloproteinase production by fibroblasts. J Cell Physiol 186(3):371–379. doi:10.1002/1097-4652(2000)9999:999<000:AID-JCP1042>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  • Line SR (2003) Variation of tooth number in mammalian dentition: connecting genetics, development, and evolution. Evol Dev 5(3):295–304. doi:10.1046/j.1525-142X.2003.03036.x

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Li C, Cai X, Xiang J, Cao Z, Dong W (2010) The temporal expression and localization of extracellular matrix metalloproteinase inducer (EMMPRIN) during the development of periodontitis in an animal model. J Periodontal Res 45(4):541–549. doi:10.1111/j.1600-0765.2010.01269.x

    PubMed  Google Scholar 

  • Määttä M, Tervahartiala T, Kaarniranta K, Tang Y, Yan L, Tuukkanen J, Sorsa T (2006) Immunolocalization of EMMPRIN (CD147) in the human eye and detection of soluble form of EMMPRIN in ocular fluids. Curr Eye Res 31(11):917–924. doi:10.1080/02713680600932290

    Article  PubMed  Google Scholar 

  • Mishra B, Kizaki K, Sato T, Ito A, Hashizume K (2012) The role of extracellular matrix metalloproteinase inducer (EMMPRIN) in the regulation of bovine endometrial cell functions. Biol Reprod 87(6):149. doi:10.1095/biolreprod.112.102152

    Article  PubMed  Google Scholar 

  • Mitsiadis TA, Smith MM (2006) How do genes make teeth to order through development? J Exp Zool B Mol Dev Evol 306(3):177–182. doi:10.1002/jez.b.21104

    Article  PubMed  Google Scholar 

  • Mitsiadis TA, Muramatsu T, Muramatsu H, Thesleff I (1995) Midkine (MK), a heparin-binding growth/differentiation factor, is regulated by retinoic acid and epithelial-mesenchymal interactions in the developing mouse tooth, and affects cell proliferation and morphogenesis. J Cell Biol 129(1):267–281. doi:10.1083/jcb.129.1.267

    Article  CAS  PubMed  Google Scholar 

  • Miwa Y, Fujita T, Sunohara M, Sato I (2008) Immunocytochemical localization of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 of the human deciduous molar tooth germ development in the human fetus. Ann Anat 190(3):246–251. doi:10.1016/j.aanat.2007.11.006

    Article  PubMed  Google Scholar 

  • Nabeshima K, Suzumiya J, Nagano M, Ohshima K, Toole BP, Tamura K, Iwasaki H, Kikuchi M (2004) Emmprin, a cell surface inducer of matrix metalloproteinases (MMPs), is expressed in T-cell lymphomas. J Pathol 202(3):341–351. doi:10.1002/path.1518

    Article  CAS  PubMed  Google Scholar 

  • Pispa J, Thesleff I (2003) Mechanisms of ectodermal organogenesis. Dev Biol 262(2):195–205. doi:10.1016/S0012-1606(03)00325-7

    Article  CAS  PubMed  Google Scholar 

  • Rocha CA, Cestari TM, Vidotti HA, de Assis GF, Garlet GP, Taga R (2014) Sintered anorganic bone graft increases autocrine expression of VEGF, MMP-2 and MMP-9 during repair of critical-size bone defects. J Mol Histol 45(4):447–461. doi:10.1007/s10735-014-9565-4

    CAS  PubMed  Google Scholar 

  • Sameshima T, Nabeshima K, Toole BP, Yokogami K, Okada Y, Goya T, Koono M, Wakisaka S (2000) Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane-type matrix metalloproteinases and activated gelatinase A in co-cultures with brain-derived fibroblasts. Cancer Lett 157(2):177–184. doi:10.1016/S0304-3835(00)00485-7

    Article  CAS  PubMed  Google Scholar 

  • Sangboonruang S, Thammasit P, Intasai N, Kasinrerk W, Tayapiwatana C, Tragoolpua K (2014) EMMPRIN reduction via scFv-M6-1B9 intrabody affects α3β1-integrin and MCT1 functions and results in suppression of progressive phenotype in the colorectal cancer cell line Caco-2. Cancer Gene Ther 21(6):246–255. doi:10.1038/cgt.2014.24

    Article  CAS  PubMed  Google Scholar 

  • Schwab W, Harada H, Goetz W, Nowicki M, Witt M, Kasper M, Barth K (2007) Immunocytochemical and biochemical detection of EMMPRIN in the rat tooth germ: differentiation-dependent co-expression with MMPs and co-localization with caveolin-1 in membrane rafts of dental epithelial cells. Histochem Cell Biol 128(3):195–203. doi:10.1007/s00418-007-0313-7

    Article  CAS  PubMed  Google Scholar 

  • Su J, Chen X, Kanekura T (2009) A CD147-targeting siRNA inhibits the proliferation, invasiveness, and VEGF production of human malignant melanoma cells by down-regulating glycolysis. Cancer Lett 273(1):140–147. doi:10.1016/j.canlet.2008.07.034

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Hemler ME (2001) Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res 61(5):2276–2281

    CAS  PubMed  Google Scholar 

  • Tang W, Chang SB, Hemler ME (2004) Links between CD147 function, glycosylation, and caveolin-1. Mol Biol Cell 15(9):4043–4050. doi:10.1091/mbc.E04-05-0402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang Y, Nakada MT, Rafferty P, Laraio J, McCabe FL, Millar H, Cunningham M, Snyder LA, Bugelski P, Yan L (2006) Regulation of vascular endothelial growth factor expression by EMMPRIN via the PI3 K-Akt signaling pathway. Mol Cancer Res 4(6):371–377. doi:10.1158/1541-7786.MCR-06-0042

    Article  CAS  PubMed  Google Scholar 

  • Tang R, Wang Q, Du J, Yang P, Wang X (2013) Expression and localization of Nell-1 during murine molar development. J Mol Histol 44(2):175–181. doi:10.1007/s10735-012-9472-5

    Article  CAS  PubMed  Google Scholar 

  • Taylor PM, Woodfield RJ, Hodgkin MN, Pettitt TR, Martin A, Kerr DJ, Wakelam MJ (2002) Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene 21(37):5765–5772. doi:10.1038/sj.onc.1205702

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Li H, Liu Y, Lin X, Lin Y, Wang Y, Hu X, Zhang Y (2014) Expression patterns of WNT/β-CATENIN signaling molecules during human tooth development. J Mol Histol 45(5):487–496. doi:10.1007/s10735-014-9572-5

    Article  CAS  PubMed  Google Scholar 

  • Wilson MC, Meredith D, Fox JE, Manoharan C, Davies AJ, Halestrap AP (2005) Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). J Biol Chem 280(29):27213–27221. doi:10.1074/jbc.M411950200

    Article  CAS  PubMed  Google Scholar 

  • Xie M, Jiao T, Chen Y, Xu C, Li J, Jiang X, Zhang F (2010) EMMPRIN (basigin/CD147) is involved in the morphogenesis of tooth germ in mouse molars. Histochem Cell Biol 133(5):585–594. doi:10.1007/s00418-010-0697-7

    Article  CAS  PubMed  Google Scholar 

  • Yurchenko V, Pushkarsky T, Li JH, Dai WW, Sherry B, Bukrinsky M (2005) Regulation of CD147 cell surface expression: involvement of the proline residue in the CD147 transmembrane domain. J Biol Chem 280(17):17013–17019. doi:10.1074/jbc.M412851200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 30900848), the Science and Technology Commission of Shanghai (Grant No. 09DZ2271100), and the Shanghai Leading Academic Discipline Project (Grant No. T0202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Jiao or Fuqiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Xing, G., Hou, L. et al. Functional role of EMMPRIN in the formation and mineralisation of dental matrix in mouse molars. J Mol Hist 46, 21–32 (2015). https://doi.org/10.1007/s10735-014-9603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-014-9603-2

Keywords

Navigation