Skip to main content
Log in

Diversity analysis, pathogen load and gene expression studies of mango cultivars infected by mango malformation disease

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Mango (Mangifera indica L.) is known as “king of fruits” in India. More than 1000 mango varieties are currently cultivated in Indian Sub-continent. However most of the orchards of mango are infected with mango malformation disease (MMD), which every year leads to huge losses in yield of mango in range of 40 to 80 % in India. Till date there is no effective control measure against MMD. Floral Malformation, in contrast to vegetative one, is very virulent and can cause the loss of the entire crop. In the present study, six mango cultivars commonly grown in Gujarat, and all infected with various degrees of MMD were taken for studying their molecular relatedness, pathogen load and defense responsiveness via gene expression to rate whether hybrids or landrace among mango cultivars are better equipped to fight MMD. Genetic diversity analysis was performed using 30 SSR markers in order to bring out clustering pattern among the six cultivars belonging to orchards of Balisana and Prantij, Gujarat. The diversity analysis gave clues to the existence of wide genetic base among the six cultivars. Fungal load studies using Real Time PCR lead to the ranking of cultivars based on maximum and minimum infection load of pathogen. Absolute quantitation studies found that cultivars like Totapuri, Neelam and Amrapali were more resistant to MMD than highly popular cultivars like Kesar. The six mango cultivars were further quantified for pathogen responsiveness with 21 defense responsive genes using Real Time PCR. Among the 21 genes selected for the study, 11 genes were directly part of defense responsive pathways like Phenyl propanoid pathway and jasmonic acid pathway. Gene expression studies aided in ranking mango hybrid like Amrapali having better systemic acquired resistance response as 11 defense responsive genes were found upregulated in this cultivar followed by landrace Neelam which is in fact a parental line of Amrapali. If MMD remains unchecked it may lead to evolution of more virulent strains of Fusarium; propelling devastating consequences in mango cultivation. Hence mango hybrids developed via molecular and expressional screening will fasten process of establishment of resistant mango cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MMD:

Mango malformation disease

H2O2 :

Hydrogen peroxide

CTAB:

Cetyl trimethyl ammonium bromide

PIC:

Polymorphic information content

UPGMA:

Unweighted pair group method with arithmetic mean

PDA:

Potato dextrose agar

NaCl:

Sodium chloride

EDTA:

Ethylene diamine tetraacetic acid

PVP:

Polyvinylpyrrolidone

LiCl:

Lithium chloride

CT:

Threshold cycle

qPCR:

Quantitative Real Time PCR

References

  • Agricultural and processed food products export development authority, ministry of commerce & industry, Government of India. http://apeda.gov.in/apedawebsite/SubHead_Products/Mango.htm

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Article  CAS  PubMed  Google Scholar 

  • Arif M, Pani D, Zaidi N, Singh US (2011) PCR-Based identification and characterization of Fusarium spp. associated with mango malformation. Biotechnol Res Int. doi:10.4061/2011/141649

    PubMed  PubMed Central  Google Scholar 

  • Bally ISE, Ping Lu, Johnson PR (2009) Mango breeding. In: breeding plantation tree crops: tropical species. Springer, New York, pp 51–82

    Chapter  Google Scholar 

  • Begum H, Reddy MT, Malathi S, Reddy BP, Arcahk S, Nagaraju J, Siddiq EA (2012) Molecular analysis for genetic distinctiveness and relationships of indigenous landraces with popular cultivars of mango (Mangifera indica L.) in Andhra Pradesh, India. Asian Aust J Plant Sci Biotech 6(1):24–37

    Google Scholar 

  • Begum H, Reddy MT, Malathi S, Reddy BP, Narshimulu G, Nagaraju J, Abubaker E (2013) Molecular analysis of intracultivar polymorphism of ‘Panchadarakalasa’ mango by microsatellite markers. Jordan J Biol Sci 6(2):127–136

    Article  CAS  Google Scholar 

  • Bhatnagar SS, Beniwal SPS (1977) Involvement of Fusarium oxysporum in causation of mango malformation. Plant Dis Rep 61:894–898

    Google Scholar 

  • Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the 1GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132(2):1020–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce T, Matthes M, Chamberlain K (2008) cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci USA 105(12):4553–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner K, Farnleitner A, Mach RL (2012) Novel methods for the quantification of pathogenic fungi in crop plants: quantitative PCR and ELISA accurately determine Fusarium biomass. In: Dr. Cumagun CJ (Ed) Plant Pathology. InTech Open Access Publisher. doi:10.5772/30240

  • Chaman ME, Copaja SV, Argandona VH (2003) Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation. J Agric Food Chem 51:2227–2231

    Article  CAS  PubMed  Google Scholar 

  • Chandelier A, Ivors K, Garbelotto M, Zini J, Laurent F, Cavelier M (2005) Validation of a real-time PCR method for the detection of Phytophthora ramorum. EPPO Bull 36:409–414

    Article  Google Scholar 

  • Chen F, D’Auria JC, Tholl D, Ross JR, Gershenzon J, Noel JP, Pichersky E (2003) An Arabidopsis thaliana gene for methyl salicylate biosynthesis, identified by a biochemical genomics approach has a role in defense. Plant J 36:577–588

    Article  CAS  PubMed  Google Scholar 

  • Cheong J, Choi Y (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19(7):409–413

    Article  CAS  PubMed  Google Scholar 

  • Ebrahim S, Usha K, Singh B (2011) Pathogenesis-related (PR)-proteins: Chitinase and β-1, 3-glucanase in defense mechanism against malformation in mango (Mangifera indica L.). Sci Hortic-Amsterdam 130(4): 847–852

    Article  CAS  Google Scholar 

  • Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park SW, Chiang Y, Acton T, Montelione G, Pichersky E, Klessig D, Tong L (2005) Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA 102:1773–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman S, Maimon M, Pinkas Y (1999) Use of GUS transformants of Fusarium subglutinans for determining etiology of mango malformation disease. Phytopathology 89:456–461

    Article  CAS  PubMed  Google Scholar 

  • Freeman S, Maimon M, Pinkas Y (2000) Etiology of mango malformation disease using GUS transformants of Fusarium subglutinans. Acta Hort 509:731–758

    Google Scholar 

  • Haggag WM, Hazza, M, Sehab A, Abd El-Wahab M (2010) Epidemiology and the association of the Fusarium species with the mango malformation disease in Egypt. Nat Sci 8(4):128–135.

    Google Scholar 

  • Haggag W, Hazza M, Sehab A, Abd El-Wahab M (2010) Scanning electron microcopy studies on mango malformation. Nat Sci 8: 122–127

    Google Scholar 

  • Hirano R, Htun-Oo T, Watanabe KN (2010) Myanmar mango landraces reveal genetic uniqueness over common cultivars from Florida, India, and Southeast Asia. Genome 53:321–330

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Neill S, Cai W, Tang Z (2003) Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid-induced saponin accumulation in suspension-cultured cells of Panax ginseng. Physiol Plant 118(3):414–421

    Article  CAS  Google Scholar 

  • Jez JM, Noel JP (2002) Reaction mechanism of chalcone isomerase pH dependence, diffusion control, and product binding differences. J Biol Chem 277(2):1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Khaskheli IM, Pathan AM, Jiskani MM, Khaskheli AM, Khaskheli JA, Khaskheli FI (2014) Frequency distribution of Fusarium nivale (FR) Ces. and other fungi associated with mango malformation disease (MMD) in Sindh, Pakistan. Int J Dev Res 4(8):1679–1683

    Google Scholar 

  • Khurana A, Gupta O (1973) Mango malformation in India. Pesticides 7:12–13

    Google Scholar 

  • Koo YJ, Kim MA, Kim EH et al (2007) Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Mol Biol 64:1–15

    Article  CAS  PubMed  Google Scholar 

  • Krishna H, Singh SK (2007) Biotechnological advances in mango (Mangifera indica L.) and their future implication in crop improvement: a review. Biotechnol Adv 25(3):223–243

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Singh US, Beniwal SPS (1993) Mango malformation: one hundred years of research. Annu Rev Phythopathol 31: 217–232

    Article  Google Scholar 

  • Kumar P, Mishra A, Modi D (2011) Current status of mango malformation in India. Asian J. Plant Sci 1:1–23

    Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5(4):325–331

    Article  CAS  PubMed  Google Scholar 

  • Lemaire SD, Guillon B, Le Maréchal P, Keryer E, Miginiac-Maslow M, Decottignies P (2004) New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 101(19):7475–7480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling Z, Zhike Z, Shunquan L, TingTing Z, XiangHui Y (2013) Evaluation of six methods for extraction of total RNA from loquat. Not Bot Horti Agrobot Cluj Napoca 41(1):313–316

    Google Scholar 

  • Livak KJ, Schmittgen TD (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  PubMed  Google Scholar 

  • Luria N, Sela N, Yaari M, Feygenberg O, Kobiler I, Lers A, Prusky D (2014) De-novo assembly of mango fruit peel transcriptome reveals mechanisms of mango response to hot water treatment. BMC Genomics. doi:10.1186/1471-2164-15-957

    Google Scholar 

  • Mahmoud Y (2012) Studies on mango soil borne diseases with special reference to Phytophthora Root Rot. PhD thesis, University Of Catania

  • Marasas W, Ploetz R, Wingfield M, Wingfield B, Steenkamp E (2006) Mango malformation disease and the associated Fusarium species. Phytopathology 96:667–672

    Article  CAS  PubMed  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and β-1, 3-glucanase. Plant Physiol 88(3):936–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee SK (1950) Mango: its allopolyploid nature. Nature 166:196–197

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Bi YM, Darby RM, Firek S, Draper J (1997) Compromising early salicylic acid accumulation delays the hypersensitive response and increases viral dispersal during lesion establishment in TMV-infected tobacco. Plant J 12(5):1113–1126

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Brown IR, Darby RM, Bestwick CS, Bi YM, Mansfield JW, Draper J (2000) A loss of resistance to avirulent bacterial pathogens in tobacco is associated with the attenuation of a salicylic acid-potentiated oxidative burst. Plant J 23(5):609–621

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman Z, Freeman S, Biton I, Sa’ada D, Paz T, Maymon M, Lavi U (2012) Molecular diagnosis of mango malformation disease and phylogeny of Fusarium mangiferae. Phytoparasitica 40:287–297

    Article  CAS  Google Scholar 

  • Nugroho LH, Verberne MC, Verpoorte R (2002) Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants. Plant Physiol Biochem 40:775–760

    Article  Google Scholar 

  • Nutz S, Döll K, Karlovsky P (2011) Determination of the LOQ in real-time PCR by receiver operating characteristic curve analysis: application to qPCR assays for Fusarium verticillioides and F. proliferatum. Anal Bioanal Chem 401:717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methylsalicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcón-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Prasad A, Singh H, Shukla TN (1965) Present status of mango malformation disease. Indian J Hortic 22:254–265

    Google Scholar 

  • Qi M, Yang, Y (2002) Quantification of Magnaporthe grisea during infection of rice plants using Real-time polymerase chain reaction and northern blot/phosphoimaging analyses. Phytopathol 92:870–876

    Article  CAS  Google Scholar 

  • Ravishankar KV, Lalitha A, Dinesh MR, Anand L (2000) Assessment of genetic relatedness among mango cultivars of India using RAPD markers. J Hortic Sci Biotech 75(2):198–201

    Article  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8(10):1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan RS, Slabaugh E, Singh VR, Lapidus LJ, Haas T, Brandizzi F (2009) The targeting of the oxysterol-binding protein ORP3a to the endoplasmic reticulum relies on the plant VAP33 homolog PVA12. Plant J 58:817–830

    Article  CAS  PubMed  Google Scholar 

  • Schulaev V, Silverman P, Raskin I (1997) Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    Article  Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9(2):261–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla S, Srivastava P, Choubey SK, Gomase VS (2010) Comparative analysis and structure elucidation of Syntaxin-A novel component tends to defense mechanism in plant proteomics. J Plant Genom 1(1):1–8

    CAS  Google Scholar 

  • Simmons CR (1994) The physiology and molecular biology of plant 1,3-β-d-glucanases and 1,3;1,4-β-d-glucanases. Crit Rev Plant Sci 13:325–387

    CAS  Google Scholar 

  • Singh D, Zeng J, Chen S (2011) Increasing manganese peroxidase productivity of Phanerochaete chrysosporium by optimizing carbon sources and supplementing small molecules. Lett Appl Microbiol 53:120–123

    Article  CAS  PubMed  Google Scholar 

  • Summanwar AS (1967) Mango malformation—serious economic consequences. Indian J Hortic 11:12–16

    Google Scholar 

  • Tang Y, Tan S, Xue H (2013) Arabidopsis inositol 1, 3, 4-trisphosphate 5/6 kinase 2 is required for seed coat development. Acta Biochim Biophys Sin 45(7):549–560

    Article  CAS  PubMed  Google Scholar 

  • Tieman D, Zeigler M, Schmelz E, Taylor MG, Rushing S, Jones JB, Klee HJ (2010) Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J 62:113–123

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Lele VC, Raychoudhuri SP, Ram A, Sang A (1974) Mango malformation: a fungal disease. J Phytopathol 79: 254–257

    Article  Google Scholar 

  • Viruel MA, Escribano P, Barbieri M, Ferri M, Hormaza JI (2005) Fingerprinting, embryo type and geographic differentiation in mango (Mangifera indica L., Anacardiaceae) with microsatellites. Mol Breed 15(4): 383–393

    Article  CAS  Google Scholar 

  • Wahdan MT, Abdelsalam AZ, El Naggar AA, Hussein MA (2011) Preliminary horticultural studies to describe and identify of two new Egyptian mango strains using DNA fingerprint. J Am Sci 7(2):641–650

    Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72:165–221

    Article  CAS  PubMed  Google Scholar 

  • Youssef SA, Maymon M, Zveibil A, Klein - Gueta D, Sztejnberg A, Shalaby AA, Freeman S (2007) Epidemiological aspects of mango malformation disease caused byFusarium mangiferae and source of infection in seedlings cultivated in orchards in Egypt. Plant Pathol J 56(2):257–263

    Article  CAS  Google Scholar 

  • Zidani S, Ferchichi A, Chaieb M (2005) Genomic DNA extraction method from pearl millet (Pennisetum glaucum) leaves. Afr J Biotechnol 4(8):862–866

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehal B. Bagatharia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, R.S., Thakur, S.V., Vyas, Y.S. et al. Diversity analysis, pathogen load and gene expression studies of mango cultivars infected by mango malformation disease. Plant Growth Regul 81, 117–130 (2017). https://doi.org/10.1007/s10725-016-0194-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0194-7

Keywords

Navigation