Skip to main content
Log in

Requirement of R-SNAREs VAMP721 and VAMP722 for the gametophyte activity, embryogenesis and seedling root development in Arabidopsis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Membrane fusion between transport vesicles and target membranes is mediated by SNARE complex, a key regulator of vesicular traffic. A functional SNARE complex consists of four coiled-coil helical bundles supplied by Q-SNARE and R-SNARE. Here, we analyze the Arabidopsis R-SNAREs VAMP721 and VAMP722. Reciprocal crosses indicated that the transmission of vamp721vamp722 allele was slightly reduced through gametophytes of VAMP721 / VAMP722 +/ plants and obviously blocked through pollen of VAMP721 +/ VAMP722 / plants. The observation of embryogenesis showed that vamp721vamp722 mutations resulted in abnormal embryo morphology, such as embryos with asymmetric developing cotyledons, three developing cotyledons, unfolded cotyledons and roots, and partial arrested embryo development at globular stage. Moreover, double mutant seedlings grew rudimentary roots displaying reduced meristem zone, disorganized QC cells, and disordered cell layer pattern and cell file alignment. Confocal images revealed that VAMP721 and VAMP722 were expressed throughout whole root. Taken together, our results suggest that VAMP721 and VAMP722 are involved in gametophyte transmission, embryo development and seedling root growth in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DIC:

Differential interference contrast

KN:

KNOLLE

PVC:

Pre-vacuolar compartment

QC:

Quiescent center

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

TE:

Transmission efficiency

TGN:

trans-Golgi network

VAMP:

Vesicle-associated membrane protein

References

  • Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 15(11):5118–5129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12(5):671–682

    Article  CAS  PubMed  Google Scholar 

  • Cazzonelli CI, Vanstraelen M, Simon S, Yin K, Carron-Arthur A, Nisar N, Tarle G, Cuttriss AJ, Searle IR, Benkova E, Mathesius U, Masle J, Friml J, Pogson BJ (2013) Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and auxin-mediated development. PLoS One 8(7):e70069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium- mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Ebel C, Mariconti L, Gruissem W (2004) Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 429(6993):776–780

    Article  CAS  PubMed  Google Scholar 

  • Ebine K, Okatani Y, Uemura T, Goh T, Shoda K, Niihama M, Morita MT, Spitzer C, Otegui MS, Nakano A, Ueda T (2008) A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20(11):3006–3021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • El Kasmi F, Krause C, Hiller U, Stierhof YD, Mayer U, Conner L, Kong L, Reichardt I, Sanderfoot AA, Jurgens G (2013) SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Mol Biol Cell 24(10):1593–1601

    Article  PubMed Central  PubMed  Google Scholar 

  • El-Kasmi F, Pacher T, Strompen G, Stierhof YD, Muller LM, Koncz C, Mayer U, Jurgens G (2011) Arabidopsis SNARE protein SEC22 is essential for gametophyte development and maintenance of Golgi-stack integrity. Plant J 66(2):268–279

    Article  CAS  PubMed  Google Scholar 

  • Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA 95(26):15781–15786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744(2):120–144

    Article  CAS  PubMed  Google Scholar 

  • Howden R, Park SK, Moore JM, Orme J, Grossniklaus U, Twell D (1998) Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics 149(2):621–631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs–engines for membrane fusion. Nature 7(9):631–643

    CAS  Google Scholar 

  • Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, Heyes J, Franck KI, Schaffner AR, Bouchez D, Maurel C (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15(2):509–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, El Kasmi F, Jurgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P (2008) Co-option of a default secretory pathway for plant immune responses. Nature 451(7180):835–840

    Article  CAS  PubMed  Google Scholar 

  • Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA 103(47):18008–18013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipka V, Kwon C, Panstruga R (2007) SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu Rev Cell Dev Biol 23:147–174

    Article  CAS  PubMed  Google Scholar 

  • Lukowitz W, Mayer U, Jurgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84(1):61–71

    Article  CAS  PubMed  Google Scholar 

  • Ohtomo I, Ueda H, Shimada T, Nishiyama C, Komoto Y, Hara-Nishimura I, Takahashi T (2005) Identification of an allele of VAM3/SYP22 that confers a semi-dwarf phenotype in Arabidopsis thaliana. Plant Cell Physiol 46(8):1358–1365

    Article  CAS  PubMed  Google Scholar 

  • Pratelli R, Sutter JU, Blatt MR (2004) A new catch in the SNARE. Trends Plant Sci 9(4):187–195

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Takahashi M, Shibasaki K, Wu S, Inaba T, Tsurumi S, Baskin TI (2010) Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. Plant Cell 22(6):1762–1776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi V, Banfield DK, Vacca M, Dietrich LE, Ungermann C, D’Esposito M, Galli T, Filippini F (2004) Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. Trends Biochem Sci 29(12):682–688

    Article  CAS  PubMed  Google Scholar 

  • Sanderfoot A (2007) Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol 144(1):6–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanderfoot AA, Pilgrim M, Adam L, Raikhel NV (2001) Disruption of individual members of Arabidopsis syntaxin gene families indicates each has essential functions. Plant Cell 13(3):659–666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanmartin M, Ordonez A, Sohn EJ, Robert S, Sanchez-Serrano JJ, Surpin MA, Raikhel NV, Rojo E (2007) Divergent functions of VTI12 and VTI11 in trafficking to storage and lytic vacuoles in Arabidopsis. Proc Natl Acad Sci USA 104(9):3645–3650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shirakawa M, Ueda H, Shimada T, Nishiyama C, Hara-Nishimura I (2009) Vacuolar SNAREs function in the formation of the leaf vascular network by regulating auxin distribution. Plant Cell Physiol 50(7):1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Shirakawa M, Ueda H, Shimada T, Koumoto Y, Shimada TL, Kondo M, Takahashi T, Okuyama Y, Nishimura M, Hara-Nishimura I (2011) Arabidopsis Qa-SNARE SYP2 proteins localized to different subcellular regions function redundantly in vacuolar protein sorting and plant development. Plant J 64(6):924–935

    Article  Google Scholar 

  • Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362(6418):318–324

    Article  CAS  PubMed  Google Scholar 

  • Surpin M, Zheng H, Morita MT, Saito C, Avila E, Blakeslee JJ, Bandyopadhyay A, Kovaleva V, Carter D, Murphy A, Tasaka M, Raikhel N (2003) The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell 15(12):2885–2899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29(2):49–65

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Sato MH, Takeyasu K (2005) The longin domain regulates subcellular targeting of VAMP7 in Arabidopsis thaliana. FEBS Lett 579(13):2842–2846

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Kim H, Saito C, Ebine K, Ueda T, Schulze-Lefert P, Nakano A (2012) Qa-SNAREs localized to the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants. Proc Natl Acad Sci USA 109(5):1784–1789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2(8):e718

    Article  PubMed Central  PubMed  Google Scholar 

  • Yi C, Park S, Yun HS, Kwon C (2013) Vesicle-associated membrane proteins 721 and 722 are required for unimpeded growth of Arabidopsis under ABA application. J Plant Physiol 170(5):529–533

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhang H, Liu P, Hao H, Jin JB, Lin J (2011) Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS ONE 6(10):e26129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (31300163, 31370219 and 31270225) and Research Start-up Funds (qd12133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyuan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10725_2015_35_MOESM1_ESM.tif

Fig. S1. Seedpods collected from Arabidopsis plants with the indicated genotypes. VAMP721 / VAMP722 +/ plants showed wild type-looking and double mutant seeds (indicated with asterisks) which showed yellowish appearance and contained aberrant embryos. The abnormal seeds of VAMP721 / VAMP722 +/ plants were rescued by incorporation of a genomic fragment containing the VAMP721 gene. Bars = 1 mm. Supplementary material 1 (TIFF 823 kb)

10725_2015_35_MOESM2_ESM.tif

Fig. S2. VAMP721 +/ VAMP722 / plants showed abnormal seeds with yellowish appearance (indicated with asterisks). The abnormal seeds of VAMP721 +/ VAMP722 / plants were rescued by incorporation of a genomic fragment containing the VAMP722 gene. Bars = 1 mm. Supplementary material 2 (TIFF 405 kb)

10725_2015_35_MOESM3_ESM.tif

Fig. S3. PCR verification of vamp721vamp722 double mutant and complemented double homozygous mutant plants. Lines 1, 2, 4, and 5 are the PCR results of wild type and double mutant using the left genomic primer (LP) plus right genomic primer (RP) of both genes, as indicated. Lines 3 and 6 detect the T-DNA insertions of the double mutant. Supplementary material 3 (TIFF 47 kb)

10725_2015_35_MOESM4_ESM.tif

Fig. S4. The expression levels of VAMP721 and VAMP722 during embryo development from Arabidopsis eFP Browser. Supplementary material 4 (TIFF 37 kb)

10725_2015_35_MOESM5_ESM.docx

Table S1. The segregation analysis of progeny derived from heterozygous double mutants. Supplementary material 5 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, W., Wang, T. et al. Requirement of R-SNAREs VAMP721 and VAMP722 for the gametophyte activity, embryogenesis and seedling root development in Arabidopsis . Plant Growth Regul 77, 57–65 (2015). https://doi.org/10.1007/s10725-015-0035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0035-0

Keywords

Navigation