Skip to main content

Advertisement

Log in

Energy Efficient Cloud Service Provisioning: Keeping Data Center Granularity in Perspective

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

The cost of power and its associated delivery are becoming significant factors in the total expenditure of large-scale data centers. Numerous techniques have been proposed to address the energy efficiency issue in cloud systems. Recently, some efforts have been made to decentralize the cloud via distributing data centers in diverse geographical positions, at different scales. In this paper, we elaborate on the energy effectiveness of service provisioning on different cloud architectures, from a mega-data center to a nano data center, which provides the extreme decentralization in terms of cloud architecture, as well as P2P-clouds or community network clouds. We study the energy consumption through an analytical and simulation framework for video streaming and MapReduce applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khosravi, A., Garg, S.K., Buyya, R.: Energy and carbon-efficient placement of virtual machines in distributed cloud data centers. In: Euro-Par 2013 Parallel Processing, pp 317–328. Springer (2013)

  2. Kertesz, A., Dombi, J., Benyi, A.: A pliant-based virtual machine scheduling solution to improve the energy efficiency of iaas clouds. Journal of Grid Computing, 1–13 (2015)

  3. de Carvalho, O.A.Jr., Bruschi, S.M., R.Santana, H.C., Santana, M.J.: Green cloud meta-scheduling. Journal of Grid Computing, 1–18

  4. Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S.U., Li, K.: An energy-efficient task scheduling algorithm in dvfs-enabled cloud environment. Journal of Grid Computing, 1–20 (2015)

  5. Pascual, J.A., Lorido-Botrán, T., Miguel-Alonso, J., Lozano, J.A.: Towards a greener cloud infrastructure management using optimized placement policies. Journal of Grid Computing, 1–15 (2014)

  6. Ebrahimirad, V., Goudarzi, M., Rajabi, A.: Energy-aware scheduling for precedence-constrained parallel virtual machines in virtualized data centers. Journal of Grid Computing 13(2), 233–253 (2015)

    Article  Google Scholar 

  7. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computation: Practice and Experience 24(13), 1397–1420 (2012)

    Article  Google Scholar 

  8. Baliga, J., Ayre, R.W., Hinton, K., Tucker, R.: Green cloud computing: Balancing energy in processing, storage, and transport. In: Proceedings of the IEEE, vol. 99, pp 149–167 (2011)

  9. Bilal, K., S.Malik, U.R., Khalid, O., Hameed, A., Alvarez, E., Wijaysekara, V., Irfan, R., Shrestha, S., Dwivedy, D., Ali, M.: A taxonomy and survey on green data center networks, Future Generation Computer Systems (2013)

  10. Hammadi, A., Mhamdi, L.: A survey on architectures and energy efficiency in data center networks. Comput. Commun. 40, 1–21 (2014)

    Article  Google Scholar 

  11. Gyarmati, L., Trinh, T.A.: How can architecture help to reduce energy consumption in data center networking. In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking. ACM, pp 183–186 (2010)

  12. Doyle, J., Shorten, R., O’Mahony, D.: Stratus: Load balancing the cloud for carbon emissions control. IEEE Transaction on Cloud Computing (2013)

  13. Moghaddam, F.F., Cheriet, M., Nguyen, K.K.: Low carbon virtual private clouds. In: Cloud Computing (CLOUD), pp 259–266 (2011)

  14. Subirats, J., Guitart, J.: Assessing and forecasting energy efficiency on cloud computing platforms. Future Generation Computer Systems (2014)

  15. Alicherry, M., Lakshman, T.: Network aware resource allocation in distributed clouds. In: INFOCOM, 2012 Proceedings IEEE. IEEE, pp 963–971 (2012)

  16. Akamai cloud computing services and content delivery network. http://akamai.com

  17. Nanodatacenters. http://www.nanodatacenters.eu/

  18. Valancius, V., Laoutaris, N., Massoulié, L., Diot, C., Rodriguez, P.: Greening the internet with nano data centers. In: Proceedings of the 5th international conference on Emerging networking experiments and technologies. ACM, pp 37–48 (2009)

  19. Supermicro microcloud solution. http://www.supermicro.com/

  20. Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.: Bcube: a high performance, server-centric network architecture for modular data centers. ACM SIGCOMM Computer Communication Review 39(4), 63–74 (2009)

    Article  Google Scholar 

  21. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the first edition of the MCC workshop on Mobile cloud computing. ACM, pp 13–16 (2012)

  22. Braem, B., Blondia, C., Barz, C., Rogge, H., Freitag, F., Navarro, L., Bonicioli, J., Papathanasiou, S., Escrich, P., Viñas Baig, R.: A case for research with and on community networks. ACM SIGCOMM Computer Communication Review 43(3), 68–73 (2013)

    Article  Google Scholar 

  23. Mell Peter, T.G.: The nist definition of cloud computing, Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 (2011)

  24. Khan, A.M., Sharifi, L., Veiga, L., Navarro, L.: Clouds of Small Things: Provisioning Infrastructure-as-a-Service from within Community Networks. In: 2nd International Workshop on Community Networks and Bottom-up-Broadband (CNBuB 2013), within IEEE WiMob, Lyon, France (2013)

  25. Choi, S., Kim, H., Byun, E., Baik, M., Kim, S., Park, C., Hwang, C.: Characterizing and classifying desktop grid. In: Cluster Computing and the Grid, CCGRID 2007. IEEE, pp 743–748 (2007)

  26. Zhiqun, X., Duan, C., Zhiyuan, H., Qunying, S.: Emerging of telco cloud. Communications, China 10(6), 79–85 (2013)

    Article  Google Scholar 

  27. Liu, Y., Xiao, L., Liu, X., Ni, L.M., Zhang, X.: Location awareness in unstructured peer-to-peer systems. IEEE Trans. Parallel Distrib. Syst. 16(2), 163–174 (2005)

    Article  Google Scholar 

  28. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer overlay network schemes. IEEE Commun. Surv. Tutorials 7(1-4), 72–93 (2005)

    Google Scholar 

  29. Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D.: A local search mechanism for peer-to-peer networks. In: Proceedings of the eleventh international conference on Information and knowledge management. ACM, pp 300–307 (2002)

  30. Hefeeda, M., Saleh, O.: Traffic modeling and proportional partial caching for peer-to-peer systems. IEEE/ACM Trans. Networking 16(6), 1447–1460 (2008)

    Article  Google Scholar 

  31. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. In: ACM SIGCOMM Computer Communication Review. ACM, vol. 38, pp 63–74 (2008)

  32. Greenberg, A., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D.A., Patel, P., Sengupta, S.: Vl2: a scalable and flexible data center network. In: ACM SIGCOMM Computer Communication Review. ACM, vol. 39, pp 51–62 (2009)

  33. Revolutonizing network design flattening the data center network with the qfabric architecture, http://www.itbiz.com.ua/media/docs/juniper/qfx/the%20q%fabric%20architecture.pdf

  34. Huang, L., Jia, Q., Wang, X., Yang, S., Li, B.: Pcube: Improving power efficiency in data center networks. In: Cloud Computing (CLOUD), 2011 IEEE International Conference on. IEEE, pp 65–72 (2011)

  35. Costa, P., Donnelly, A., O’Shea, G., Rowstron, A.: Camcubeos: a key-based network stack for 3d torus cluster topologies. In: Proceedings of the 22nd international symposium on High-performance parallel and distributed computing. ACM, pp 73–84 (2013)

  36. Clos, C.: A study of non-blocking switching networks. Bell System Technical Journal 32(2), 406–424 (1953)

    Article  Google Scholar 

  37. Abts, D., Marty, M.R., Wells, P.M., Klausler, P., Liu, H.: Energy proportional datacenter networks. ACM, vol. 38, pp 338–347 (2010)

  38. D. Lin, Y. Liu, M. Hamdi, J. Muppala: Flatnet: Towards a flatter data center network. In: Global Communications Conference (GLOBECOM), 2012. IEEE. IEEE, pp 2499–2504 (2012)

  39. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: Dcell: a scalable and fault-tolerant network structure for data centers. ACM SIGCOMM Computer Communication Review 38(4), 75–86 (2008)

    Article  Google Scholar 

  40. Wang, G., Andersen, D.G., Kaminsky, M., Papagiannaki, K., Ng, T., Kozuch, M., Ryan, M.: c-through: Part-time optics in data centers. ACM SIGCOMM Computer Communication Review 40 (4), 327–338 (2010). ACM

    Article  Google Scholar 

  41. Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H.H., Subramanya, V., Fainman, Y., Papen, G., Vahdat, A.: Helios: a hybrid electrical/optical switch architecture for modular data centers. ACM SIGCOMM Computer Communication Review 41(4), 339–350 (2011)

    Google Scholar 

  42. Belady, C., Rawson, A., Pfleuger, J., Cader, T.: Green grid data center power efficiency metrics: Pue and dcie. In: Technical, report,Green Grid, Tech. Rep. (2008)

  43. Bertran, R., Becerra, Y., Carrera, D., Beltran, V., Tallada Gonzalez, M., Martorell, X., Torres, J., Ayguade, E.: Accurate energy accounting for shared virtualized environments using pmc-based power modeling techniques. In: Grid Computing (GRID), 2010 11th IEEE/ACM International Conference on. IEEE, pp 1–8 (2010)

  44. Schubert, S., Kostic, D., Zwaenepoel, W., Shin, K.G.: Profiling software for energy consumption. In: Green Computing and Communications (GreenCom), IEEE International Conference on. IEEE, vol. 2012, pp 515–522 (2012)

  45. Wong, D., Annavaram, M.: Knightshift: Scaling the energy proportionality wall through server-level heterogeneity. In: Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM International Symposium on. IEEE, pp 119–130 (2012)

  46. Spec power benchmark, https://www.spec.org/benchmarks.html

  47. Tolia, N., Wang, Z., Marwah, M., Bash, C., Ranganathan, P., Zhu, X.: Delivering energy proportionality with non energy-proportional systems-optimizing the ensemble. HotPower 8, 2–2 (2008)

    Google Scholar 

  48. Makkes, M.X., Taal, A., Osseyran, A., Grosso, P.: A decision framework for placement of applications in clouds that minimizes their carbon footprint. Journal of Cloud Computing 2(1), 1–13 (2013)

    Google Scholar 

  49. Google data center cooling. http://www.google.com/about/datacenters/efficiency/internal/water-and-cooling

  50. Vasic, N., Scherer, T., Schott, W.: Thermal-aware workload scheduling for energy efficient data centers. In: Proceedings of the 7th international conference on Autonomic computing. ACM, pp 169–174 (2010)

  51. Open, Free and Neutral Network Internet for everybody. http://guifi.net/en

  52. Athens Wireless Metropolitan Network. http://www.awmn.net

  53. FunkFeuer free net. http://www.funkfeuer.at

  54. Freifunk. http://freifunk.net

  55. Garcia-Saavedra, A., Serrano, P., Banchs, A., Bianchi, G.: Energy consumption anatomy of 802.11 devices and its implication on modeling and design. In: Proceedings of the 8th international conference on Emerging networking experiments and technologies. ACM, pp 169–180 (2012)

  56. Baliga, J., Hinton, K., Tucker, R.S.: Energy consumption of the internet. In: Joint International Conference on Optical Internet, and the 32nd Australian Conference on Optical Fibre Technology. COIN-ACOFT 2007. IEEE, pp 1–3 (2007)

  57. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing services. Futur. Gener. Comput. Syst 29(4), 1012–1023 (2013)

    Article  Google Scholar 

  58. da Silva Dias Rodrigues, P., da Cruz Ribeiro, C.N., Veiga, L.: Incentive mechanisms in peer-to-Peer networks. In: 15th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems (DPDNS), 24th IEEE International Parallel & Distributed Processing Symposium (IPDPS2010). IEEE Press (2010)

  59. Simão, J., Veiga, L.: Flexible SLAs in the cloud with partial utility-driven scheduling. In: IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom 2013). IEEE, p 2013

  60. Simão, J., Veiga, L.: VM economics for java cloud computing - an adaptive and resource-aware java runtime with quality-of-Execution. In: The 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2012) Doctoral Symposium Cloud Scheduling, Clusters and Data Centers. IEEE (2012)

  61. Roy, S., Rudra, A., Verma, A.: An energy complexity model for algorithms. In: Proceedings of the 4th conference on Innovations in Theoretical Computer Science. ACM, pp 283–304 (2013)

  62. Stress tool. http://linux.die.net/man/1/stress

  63. Quick Mesh Project. http://qmp.cat

  64. Community Networks Testbed for the Future Internet, CONFINE. http://confine-project.eu/,FP7EuropeanProject288535

  65. Cerd-Alabern, L., Neumann, A., Escrich, P.: Experimental evaluation of a wireless community mesh network. In: The 16th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM’13. Barcelona, Spain: ACM, pp 3–8 (2013)

  66. qMp Sants-UPC monitoring web page. http://dsg.ac.upc.edu/qmpsu

  67. OpenWrt Linux distribution for embedded devices. https://openwrt.org

  68. Yang, H., Luan, Z., Li, W., Qian, D.: Mapreduce workload modeling with statistical approach. Journal of grid computing 10(2), 279–310 (2012)

    Article  Google Scholar 

  69. Pouwelse, J., Langendoen, K., Lagendijk, R., Sips, H.: Power-aware video decoding. In: 22nd Picture Coding Symposium, Seoul, Korea, pp 303–306 (2001)

  70. Amazon cloud front live streaming service. http://docs.aws.amazon.com/amazoncloudfront/

  71. Mpeg2. http://www.h264encoder.com/

  72. Mok, R.K., Chan, E.W., Chang, R.K.: Measuring the quality of experience of http video streaming. In: Integrated Network Management (IM), 2011 IFIP/IEEE International Symposium on. IEEE, vol. 2011, pp 485–492

  73. Chun, B.-G., Iannaccone, G., Iannaccone, G., Katz, R., Lee, G., Niccolini, L.: An energy case for hybrid datacenters, vol. 44 (2010)

  74. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. IEEE computer 40(12), 33–37 (2007)

    Article  Google Scholar 

  75. Payberah, A.H., Kavalionak, H., Kumaresan, V., Montresor, A., Haridi, S.: Clive: Cloud-assisted p2p live streaming. In: Peer-to-Peer Computing (P2P), 2012 IEEE 12th International Conference on. IEEE, vol. 2012, pp 79–90

  76. Sharifi, L., Rameshan, N., Freitag, F., Veiga, L.: Energy efficiency dilemma: P2p-cloud vs. datacenter (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Sharifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, L., Cerdà-Alabern, L., Freitag, F. et al. Energy Efficient Cloud Service Provisioning: Keeping Data Center Granularity in Perspective. J Grid Computing 14, 299–325 (2016). https://doi.org/10.1007/s10723-015-9358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-015-9358-3

Keywords

Navigation