Skip to main content
Log in

AFLP fingerprinting and essential oil profiling of cultivated and wild populations of Sardinian Salvia desoleana

  • Notes on Neglected and Underutilized Crops
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Salvia desoleana Atzei et Picci is a herbaceous perennial plant endemic to Sardinia, Italy. Its leaves are a source of essential oil, used in the pharmaceutical and cosmetic industries. Due to the increasing interest in the essential oils production, cultivated accessions have supplanted many wild populations which had become small, fragmented and isolated with a serious risk of genetic erosion. With the aim of preserving the local genetic diversity, AFLP fingerprinting has been used to facilitate the comprehensive evaluation of both cultivated and wild S. desoleana populations. A set of 165 polymorphic AFLP fragments was generated, revealing a genetic diversity (He) ranging from 0.11 to 0.22 in wild and cultivated populations respectively. Two major clusters were revealed by STRUCTURE analysis, one including wild and the other capturing the cultivated accessions. The divergence between the cultivated and wild materials was also confirmed by the analysis of molecular variance (FST = 0.52). GC/MS analysis performed on the essential oil extracts identified 37 compounds, eight of which (1,8 cineole, terpinolene, α and β thujone, camphor, terpinyl acetate, germacrene D and linalyl acetate) were strongly represented. Three main fractions were identified in the essential oils: monoterpenes, sesquiterpenes and diterpenes. All terpenes levels were significantly correlated with the AFLP genetic clusters (P < 0.0001), suggesting close correspondence between genetic groups and chemical profiles. This work aims to describe the integrated investigation of genetic and chemical diversity of S. desolena germoplasm, in order to improve the species yield and to plan a future conservation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams RP, Identification of essential oil components by gas chromatography/mass spectroscopy (2001) Fourth ed. Carol Stream, Illinois, Allured Publishing Corporation

  • Atzei AD, Picci V (1982) “Salvia desoleana” Atzei et Picci, specie nuova dell’isola di Sardegna. Webbia 36(1):71–78

    Article  Google Scholar 

  • Baricevic D, Sosa S, Della Loggia R, Tubaro A, Simonovska B, Krasna A, Zupancic A (2001) Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid. J Ethnopharmacol 75:125–132

    Article  CAS  PubMed  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  CAS  PubMed  Google Scholar 

  • Boszormenyi A, Hethelyi E, Farkas A, Horvath G, Papp N, Lemberkovics E, Szoke E (2009) Chemical and genetic relationships among sage (Salvia officinalis L.) cultivars and Judean sage (Salvia judaica Boiss.). J Agric Food Chem 11:4663–4667

    Article  Google Scholar 

  • Braglia L, Casabianca V, De Benedetti L, Pecchioni N, Mercuri A, Cervelli C, Ruffoni B (2011) Amplified fragment length polymorphism markers for DNA fingerprinting in the genus Salvia. Plant Biosyst 145(2):274–277

    Article  Google Scholar 

  • Camarda I (1984) Le Piante endemiche della Sardegna:148. Bollettino della Società sarda di scienze naturali 23: pp 261–265. ISSN 0392-6710

  • Ceschel GC, Maffei P, Moretti MD, Demontis S, Peana AT (2000) In vitro permeation through porcine buccal mucosa of Salvia desoleana Atzei & Picci essential oil from topical formulations. Int J Pharm 195:171–177

    Article  CAS  PubMed  Google Scholar 

  • Claßen-Bockhoff R, Wester P, Tweraser E (2003) The stamina lever mechanism in Salvia L. (Lamiaceae)—a review. Plant Biol 5:33–41

    Article  Google Scholar 

  • Clebsch B (2003) The new book of Salvias: sages for every garden. Timber Press, Portland

    Google Scholar 

  • Diana-Corrias S (1983) Numeri cromosomici per la Flora Italiana: 948–955. Informatore Botanico Italiano 15(I): 44–48

  • Dosset M, Bassil NV, Finn CE (2010) Transferability of Rubus microsatellite markers to black raspberry. Acta Hortic 859:103–106

    Google Scholar 

  • El–Kassaby YA, Ritland K (1996) Impact of selection and breeding on the genetic diversity in Douglas-fir. Biodivers Conserv 5(6):795–813

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) How to use the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Heckel G (2006) Computer programs for population genetics data analysis: a survival guide. Nat Rev Genet 7:745–758

    Article  CAS  PubMed  Google Scholar 

  • Faegri K, Van der Piji L (1979) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Farag RS, Salem H, Badei AZMA, Hassanein DE (1986) Biochemical studies on the essential oil of some medicinal plants. Fett Seifen Anstr 88:69–72

    Article  CAS  Google Scholar 

  • Farmacopea Ufficiale Italiana (2008) XII edizione

  • Ferriol M, Picò B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavor Fragr J 23(4):213–226

    Article  CAS  Google Scholar 

  • Guo BL, Feng YX, Zhao YJ (2002) Review of germplasm resources studies on Salvia miltiorrhiza. China J Chin Mater Med 27:492–495

    Google Scholar 

  • Huff DR (1997) RAPD Characterization of heterogeneous perennial ryegrass cultivars. Crop Sci 37(2):557–564

    Article  CAS  Google Scholar 

  • Jennings W, Shibamoto T (1980) Qualitative analysis of flavour and fragrance volatiles by glass capillary gas chromatography. Academic Press, New York

    Google Scholar 

  • JMP ver. 7. Copyright © (2007) by SAS Institute Inc. Cary, NC

  • Joulain D, König WA (1998) The atlas of spectral data of sesquiterpenes hydrocarbons. E.B.-Verlag Hamburg, Germany

    Google Scholar 

  • Karaca M, Ince AG, Ay ST, Turgut K, Onus AN (2008) PCR-RFLP and DAMD-PCR genotyping for Salvia species. J Sci Food Agric 88:2508–2516

    Article  CAS  Google Scholar 

  • Kennedy BS, Nielsen MT, Severson RF, Sisson VA, Stephenson MK, Jackson DM (1992) Leaf surface chemicals from Nicotiana affecting germination of Peronospora tabacina (Adam) sporangia. J Chem Ecol 18:1467–1479

    Article  CAS  PubMed  Google Scholar 

  • Linstrom PJ, Mallard WG (eds) (2005) NIST Chemistry WebBook, NIST Standard Reference Data-base Number 69. National Institute of Standards and Technology, Gaithersburg, 20899. http://webbook.nist.gov2005

  • Marchioni AH, Di Stefano FC (1980) Le piante medicinali della Sardegna, guida pratica per il riconoscimento di 102 specie. Edizioni La Torre, Cagliari p 236

    Google Scholar 

  • Marongiu B, Porcedda S, Della Porta G, Reverchon E (2001) Extraction and isolation of Salvia desoleana and Mentha spicata subsp. insularis essential oils by supercritical CO2. Flavor Fragr J 16:384–388

    Article  CAS  Google Scholar 

  • McLafferty FW, Stauffer DB (1988) The Wiley NBS registry of mass spectral data, 4th edn. New York, Wiley-Interscience

    Google Scholar 

  • McLafferty FW, Stauffer DB (1994) The Wiley NBS registry of mass spectral data, 6th edn. New York, Wiley-Interscience

    Google Scholar 

  • Médail F, Quezel P (1999) Biodiversity hot-spots in the Mediterranean Basin: setting global 25 conservation priorities. Conserv Biol 13:1510–1513

    Article  Google Scholar 

  • Melito S, Chessa I, Erre P, Podani J, Mulas M (2013a) The genetic diversity of Sardinian myrtle (Myrtus communis L.) populations. Electron J Biotech 16(6): Issue of November 15

  • Melito S, Sias A, Petretto GL, Chessa M, Pintore G, Porceddu A (2013b) Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum. PLoS One 8(11):e79043. doi:10.1371/journal.pone.0079043

    Article  PubMed Central  PubMed  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peana A, Moretti MD, Juliano C (1999) Chemical composition and antimicrobial action of the essential oils of Salvia desoleana and S. sclarea. Planta Med 65:752–754

    Article  CAS  PubMed  Google Scholar 

  • Peana A, Satta M, Moretti MDL, Orecchioni M (1994) A study on choleretic activity of Salvia desoleana essential oil. Planta Med 60(7):478–479

    Article  CAS  PubMed  Google Scholar 

  • Peana AT, Moretti MDL (2002) Pharmacological activities and applications of Salvia sclarea and Salvia desoleana essential oils. A Ur-Rahman (ed.) Studies in natural product chemistry, vol 26, part G. Elsevier, UK, pp. 391–425

  • Pitarokili D, Couladis M, Petsikos-Panayotarou N, Tzacou O (2002) Composition and antifungal activity on soil-borne pathogens of the essential oil of Salvia sclarea from Greece. J Agric Food Chem 50:6688–6691

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2007) Documentation for structure software, version 2.2. http://pritch.bsd.uchicago.edu/software

  • Radosavljević I, Satovic Z, Jakse J, Javornik B, Greguraš D, Jug-Dujaković M, Liber Z (2012) Development of new microsatellite markers for Salvia officinalis L. and its potential use in conservation-genetic studies of narrow endemic Salvia brachyodon vandas. Int J Mol Sci 13:12082–12093

    Article  PubMed Central  PubMed  Google Scholar 

  • Sazima I, Buzato S, Sazima M (1995) An assemblage of hummingbird-pollinated flowers in a montane forest in Southeastern Brazil. Bot Acta 109:149–160

    Article  Google Scholar 

  • Skoula M, El Halali E, Markis AM (1999) Evaluation of the genetic diversity of Salvia fruticosa Mill. Clones using RAPD markers and comparison with the essential oil profiles. Biochem Syst Ecol 27:559–568

    Article  CAS  Google Scholar 

  • Sokovic MD, Brkic DB, Dzamic AM, Ristic MS, Marin PD (2009) Chemical composition and antifungal activity of Salvia desoleana Atzei & Picci essential oil and its major components. Flavor Fragr J 24:83–87

    Article  CAS  Google Scholar 

  • Song Z, Li X, Wang H, Wang J (2010) Genetic diversity and population structure of Salvia miltiorrhiza Bge in China revealed by ISSR and SRAP. Genetica 138(2):241–249

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD (2005) Plant evolution in the mediterranean. Oxford University Press, Oxford

    Book  Google Scholar 

  • Tosun A, Khan S, Kim YS, Calín-Sánchez Á, Hysenaj X, Carbonell-Barrachina ÁA (2014) Essential oil composition and anti-inflammatory activity of Salvia officinalis L. (Lamiaceae) in murin macrophages. Trop J Pharm Res 13(6):937–942

    Article  Google Scholar 

  • Ulubelen A, Topcu G, Eris C, Sonmez U, Kartal M, Kurucu S, Bozok-Johansson C (1994) Terpenoids from Salvia sclarea. Phytochemistry 36(4):971–974

    Article  CAS  PubMed  Google Scholar 

  • Walker JB, Sytsma KJ, Treutlein J, Wink M (2004) Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am J Bot 91(7):1115–1125

    Article  PubMed  Google Scholar 

  • Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

  • Zhang Y, Xing L, Zhezhi W (2013) Diversity evaluation of Salvia milthiorrhiza using ISSR markers. Biochem Genet 51:707–721

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by Fondazione Banco di Sardegna (Sassari): “In vitro production of secondary metabolite from medicinal plants” project (Principal Investigator: Grazia Maria Scarpa); RAS—Regione Autonoma della Sardegna “Master and Back” program 2011 (Postdoctoral fellowship “Back”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Melito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Analysis of population genetic structure performed on Cluster A (CA) and Cluster B (CB). CA harbored two sub-groups CAI and CAII; while no further subgroups were discriminated in CB. (TIFF 257 kb)

Table S1

Adapter and primer sequences used for AFLP fingerprinting. (DOC 32 kb)

Table S2

FST Probability value matrix among the Salvia spp populations based on 10,000 permutations. (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapposelli, E., Melito, S., Barmina, G.G. et al. AFLP fingerprinting and essential oil profiling of cultivated and wild populations of Sardinian Salvia desoleana . Genet Resour Crop Evol 62, 959–970 (2015). https://doi.org/10.1007/s10722-015-0263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0263-1

Keywords

Navigation